
 i

TRAFFIC VIOLATION PROCTORING SYSTEM: HELMET

AND TRIPLE RIDING DETECTION
A Project report submitted in partial fulfillment of the requirements for

the award of the degree of

BACHELOR OF TECHNOLOGY

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

Submitted by

M.Jayasree (317126512147) P.Sai Vamsi Dheeraj (317126512158)

S.Sindhura (317126512171) K.Lokesh (318126512L32)

Under the guidance of

Mr. N. SRINIVASA NAIDU M.Tech, AMIETE (Ph.D)

Assistant Professor, Department of ECE

 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY AND SCIENCES
(UGC AUTONOMOUS)

(Permanently Affiliated to AU, Approved by AICTE and Accredited by NBA & NAAC with ‘A’ Grade)
Sangivalasa, bheemili mandal, visakhapatnam dist.(A.P)

2020-2021

 iii

ACKNOWLEDGEMENT

 We would like to express our deep gratitude to our project guide Mr. N. Srinivasa

Naidu Assistant Professor, M.Tech, AMIETE(Ph.D), Department of Electronics and

Communication Engineering, ANITS, for his/her guidance with unsurpassed knowledge and

immense encouragement. We are grateful to Dr. V. Rajyalakshmi, Professor & Head of the

Department, Electronics and Communication Engineering, for providing us with the required

facilities for the completion of the project work.

 We are very much thankful to the Principal and Management, ANITS, Sangivalasa,

for their encouragement and cooperation to carry out this work.

 We express our thanks to all teaching faculty of Department of ECE, whose suggestions

during reviews helped us in accomplishment of our project. We would like to thank all non-

teaching staff of the Department of ECE, ANITS for providing great assistance in

accomplishment of our project.

 We would like to thank our parents, friends, and classmates for their encouragement

throughout our project period. At last but not the least, we thank everyone for supporting us

directly or indirectly in completing this project successfully.

 PROJECT STUDENTS

M.Jayasree(317126512147),

P.Sai Vamsi Dheeraj(317126512158),

S.Sindhura(317126512171),

K.Lokesh(318126512L32)

 iv

ABSTRACT

Violations in traffic laws are very common in a highly populated country like India. The

accidents associated with these violations cause a huge loss to life and property. Since utilization

of bikes is high, mishaps associated with bikes are additionally high contrasted with different

vehicles. One of the main causes of these is not using motorcycle helmets. So we propose an

approach called “TRAFFIC VIOLATION PROCTORING SYSTEM:HELMET AND TRIPLE

RIDING DETECTION” using deep learning which automatically sends challan or send an SMS

for individuals in case of identification of bicycle riders without headgear and who are triple

riding utilizing surveillance videos in real-time. The proposed approach initially recognizes

motorcycle riders utilizing background subtraction and object segmentation. At that point we

utilize object classifier to classify violators.

Since wearing helmet is critical while driving, our main aim is to decrease the danger of

injuries in case of accident. By detecting the motorcyclists without helmets, triple riding or other

violations we can therefore increase their safety while on road. Hence by automating we reduce

the workload on the traffic control team and will be able to share the evidence with the team

efficiently to impose fines on violators.

 v

CONTENTS
LIST OF SYMBOLS vi

LIST OF FIGURES vii

LIST OF TABLES viii

LIST OF ABBREVATIONS ix

CHAPTER 1 INTRODUCTION 01

1.1 Project Overview 02

1.2 Literature Survey 02

1.3 Problem Definition 04

CHAPTER 2 OVERVIEW OF OBJECT DETECTION 05

2.1 Existing Methods 05

2.1.1 Single Shot Multibox Detection The paper about SSD 05

2.1.2 Region Proposals (R-CNN, Fast R-CNN, Faster R-CNN) 07

2.1.3 Resnet 07

2.1.4 Yolov3 08

CHAPTER 3 OBJECT DETECTION WITH PYTHON AND IMAGEAI 12
3.1 Creating an Image Object Detection System 12

3.2 Tuning Image Object Detector 15

3.3 Creating a Video Object Detection System 17

3.4 Tuning Video Object Detection 20

3.5 Creating Video Object Detection from Webcam 22

3.6 Closing Remarks 23

CHAPTER 4 SYSTEM DESIGN 24

 vi

4.1 Procedure 24

4.2 Flowchart of Proposed System 24

4.3 System Requirements 24

 4.3.1 Major Software’s and Libraries Used 24

CHAPTER 5 SYSTEM IMPLEMENTATION 28

5.1 Model for Motorcycle Detection 28

5.2 Model for Helmet Detection 30

5.2.1 Procedure for training a YOLOV3 HELMET model 30

5.3 Number plate Detection 31

5.4 Automated E-Challan Generation 32

5.5 Triple Riding Detection 33

5.5.1 Proposed Model 33

5.5.2 Traffic rule violation recognition system 34

5.5.3 YOLOv3 (You Only Look Once) 35

5.5.4 COCO dataset 36

5.5.5 Training and testing data 36

5.5.6 License plate detection 36

5.5.7 E-Challan for Triple Riding 37

CHAPTER 6 WORKFLOW & SYSTEM TESTING 38

6.1 Account Setup Gdrive 38

6.2 Detection of Motorcycle 39

6.3 Detection of Helmet 42

6.4 Detection of Triple Riding 44

6.5 Detection of Number Plate 45

6.6 E-Challan Generation 47

6.7 Reliability 50

FUTURE WORK 51

CONCLUSION 52

REFERENCES 53

 vii

LIST OF SYMBOLS

Bw Bounding box width

Bh Bounding box height

Bx Position of the box at x

By Position of the box at y

Pc Probability that box contains the detectable

object

LIST OF FIGURES

Figure no Title Page no

Fig. 2.1 Retina Net Detector Architecture. 08

Fig. 2.2 Overview of YOLOV3 algorithm. 09

Fig. 2.3 YoloV3 Architecture 09

Fig. 2.4

Fig. 2.5

Bounding box prediction.

Algorithm comparison

10

11

Fig. 3.1 Input image without detection and output image indicating detection. 15

Fig. 3.2 Detection of class objects with their accuracies. 17

Fig. 3.3 Complete output of the detected objects with greater accuracy 19

Fig. 4.1 Flowchart of the System 24

Fig. 5.1 Flowchart for Helmet Model 30

Fig. 5.2 Helmet dataset 31

Fig. 5.3 Working of Web API 32

Fig. 5.4 Proposed Model of triple riding detection 34

Fig. 5.5 Test image for triple riding. 35

Fig. 5.6 Test image for non-triple riding detection. 36

 viii

Fig. 5.7 License Plate detection 37

Fig. 6.1 Google Drive Login 38

Fig. 6.2 Importing libraries 39

Fig. 6.3 (a) and (b) Code for Motorcycle Detection 39

Fig. 6.4 (a) Frame-1 Case 1 (b) Frame-2 Case 2 40

Fig. 6.5 Helmet ROI cropping. 41

Fig. 6.6 Code for Helmet Detection 42

Fig. 6.7 Helmet yolov3 prediction 43

Fig. 6.8 Code for Triple Riding Detection. 44

Fig. 6.9 Output for Triple Riding Detection 45

Fig. 6.10 Code for Number Plate Recognition 45

Fig. 6.11 Database created in Spreadsheet 46

Fig. 6.12 Number plate recognition 46

Fig. 6.13 Extraction of details using Google Sheets 47

Fig. 6.14 Code for E-Challan Generation 48

Fig. 6.15 Challan for No Helmet Violation. 49

Fig. 6.16 Challan for Triple Riding Violation 49

LIST OF TABLES

Table no Title Page no

Table 5.1

COCO dataset objects 29

Table 5.2
Table 6.1

ASP.NET Web API Versions
Analysis of the model

32
50

 ix

LIST OF ABBREVATIONS

CNN convolutional Neural Network

R-CNN region based- convolutional Neural Network

LBP Local binary pattern

HoG Histogram of oriented gradients

HaaR Haar casacade

ML Machine Learning

ResNet Residual Neural Network

COCO Common objects in context

BGR Blue Green Red

RGB Red Green Blue

Collab Collaboratory

API Application Programming Interface

HTML Hypertext markup language

 1

CHAPTER 1

INTRODUCTION

All over the world around 1.35 million lives are lost each year, 50 million people are

getting injured due to road accidents, according to a report titled “ The Global status Revised

Manuscript Received on December 05, 2019 report on road safety 2018” released by world

health organization. It is very hard to imagine that this burden is unevenly borne by

motorcyclists, cyclists, and pedestrians. This report noted that a comprehensive action plan

must be set up in order to save lives.

Two-wheeler is a very popular mode of transportation in almost every country.

However, there is a high risk involved because of less protection. When a two-wheeler meets

with an accident, due of sudden deceleration, the rider is thrown away from the vehicle. If

head strikes any object, motion of the head becomes zero, but with its own mass brain

continues to be in motion until the object hits inner part of the skull. Sometimes this type of

head injury may be fatal in nature. In such times helmet acts as life saviour. Helmet reduces

the chances of skull getting decelerated, hence sets the motion of the head to almost zero.

Cushion inside the helmet absorbs the impact of collision and as time passes head comes to a

halt. It also spreads the impact to a larger area, thus safeguarding the head from severe

injuries. More importantly it acts as a mechanical barrier between head and object to which

the rider came into contact. Injuries can be minimized if a good quality full helmet is used.

Traffic rules are there to bring a sense of discipline, so that the risk of deaths and injuries can

be minimized significantly. However strict adherence to these laws is absent. Hence efficient

and feasible techniques must be created to overcome these problems. To reduce the involved

risk, it is highly desirable for bike-riders to use helmet. Worrying fact is that India ranks in

top as far as road crash deaths are considered. Rapid urbanization, avoiding helmets, seat

belts and other safety measures while driving are some of the reasons behind this trend

according to analysis done by experts. In 2015 India signed Brasilia Declaration on Road

Safety, where India committed to reduce road crash deaths to 50 percent by 2020.

Observing the usefulness of helmet, Governments have made it a punishable offense

to ride a bike without helmet and have adopted manual strategies to catch the violators.

However, the existing video surveillance-based methods are passive and require significant

human assistance. In general, such systems are infeasible due to involvement of humans,

whose efficiency decreases over long duration.

 2

Automation of this process is highly desirable for reliable and robust monitoring of

these violations as well as it also significantly reduces the amount of human resources

needed.

Recent research has successfully done this work based on CNN, R-CNN, LBP, HoG, HaaR

features, etc. But these works are limited with respect to efficiency, accuracy or the speed

with which object detection and classification is done.

1.1 Project Overview:

In this Project Work, a Non-Helmet Rider detection system is built which attempts to

satisfy the automation of detecting the traffic violation of not wearing helmet and extracting

the vehicles’ license plate number. The main principle involved is Object Detection using

Deep Learning at three levels. The objects detected are person, motorcycle at first level using

YOLOv3, helmet at second level using YOLOv3, License plate at the last level using Web

API. Then the license plate registration number is extracted using Web Automation. Hence a

database will be available for analysis for the police authority.

1.2 Literature Survey

In various fields, there is a necessity to detect the target object and track them

effectively while handling occlusions and other included complexities. Many researchers

(Almeida and Guting 2004, Hsiao-Ping Tsai 2011, Nicolas Papadakis and Aure lie Bugeau

2010) attempted for various approaches in object tracking. The nature of the techniques

largely depends on the application domain. Some of the research works which made the

evolution to proposed work in the field of object tracking are depicted as follows

Until very recently, most of the methods used for object detection and object

classification used methods such as Haar, HOG, local binary patterns (LBP), the scale

invariant feature transform (SIFT), or speeded up robust features (SURF) for feature

extraction and then support vector machines (SVM), random forests, or AdaBoost for the

classifier. Silva et al. [1] use methods such as histograms of oriented gradient (HOG), LBP,

and the wavelet transform (WT) for feature extraction for classifying motorcyclists with

helmets and without helmets. They use multiple combinations of the base features such as

HOG+LBP+WT, obtaining seven possible feature sets. In [5], K. Dahiya et al. came up with

helmet detection from surveillance videos where they used an SVM classifier for classifying

 3

between motorcyclist and non-motorcyclist and another SVM classifier for classifying

between helmet and without helmet. For both classifiers, three widely used features - HOG,

SIFT and LBP - were implemented and the performance of each was compared with that of

other two features. They concluded that HOG descriptor helped in achieving the best

performance.

In [6], C. Vishnu et al. proposed an approach using Convolutional Neural Networks

(CNNs) for classification. In recent years, CNNs performing both automatic feature

extraction and classification have outperformed previously dominant methods in many

problems. Advances in graphical processing units (GPUs), along with the availability of more

training data for neural networks to learn, have recently enabled unprecedented accuracy in

the fields of machine vision, natural language processing, and speech recognition. Nowadays,

all state-of-the-art methods for object classification, object detection, character classification,

and object segmentation are based on CNNs. See for example the methods used in the

ImageNet large scale visual recognition challenge [2].

Li and Shen [3] use a deep convolutional neural network and long-short term memory

(LSTM) for the license plate recognition and character extraction process. They use two

methods for segmentation and recognition. [4] have shown the use of CNNs for text detection

and recognition provides significant improvement over existing methods.

The YOLOv3 algorithm is capable of accurate object detection (traffic participants)

with near real- time performance (~ 25 fps on HD images) in the variety of the driving

conditions (bright and overcast sky, snow on the streets, and driving during the night).

YOLO v3 algorithm consists of fully CNN [7] and an algorithm for post-processing

outputs from neural network. CNNs are special architecture of neural networks suitable for

processing grid-like data topology. The distinctive feature of CNNs which bears importance

in object detection is parameter sharing. Unlike feedforward neural networks, where each

weight parameter is used once, in CNN architecture each member of the kernel is used at

every position of the input, which means learning one set of parameters for every location

instead a separate set of parameters.

The YOLOv3 AP does indicate a trade-off between speed and accuracy for using

YOLO when compared to RetinaNet, since RetinaNet training time is greater than

YOLOv3. The accuracy of detecting objects with YOLOv3 can be made equal to the

accuracy when using RetinaNet by having a larger dataset, which makes it an ideal option

for models that can be trained with large datasets. An example of this would be common

 4

detection models like traffic detection, where plenty of data can be used to train the

model since the number of images of different vehicles is plentiful. YOLOv3 may not be

ideal to use with niche models where large datasets can be hard to obtain.

1.3 Problem Definition:

Road safety is the most important aspect of this automobile driven technological

world. Considering the number of people taking road transport as the means to reach their

destination, the number of people reaching the heavens instead of their safe home, is

increasing day-to-day. The irresponsible driving of the two-wheelers or the heavy speeding of

the four-wheelers is the major reason for the occurring accidents. These irresponsible drivers

are making it hard for the drivers that follow the traffic rules. The current increase in the

fine/challan system might control these irresponsible drivers to an extent, but this is not a

permanent solution that we can rely on.

Existing system monitors the traffic violations primarily through CCTV recordings, where

the traffic police must investigate the frame where the traffic violation is happening, zoom

into the license plate in case rider is not wearing helmet. But this requires lot of manpower

and time as the traffic violations frequently and the number of people using motorcycles is

increasing day-by-day. What if there is a system, which would automatically look for traffic

violation of not wearing helmet while riding motorcycle and if so, would automatically

extract the vehicles’ license plate number.

 5

CHAPTER 2

OVERVIEW OF OBJECT DETECTION

Object detection is a computer technology related to computer vision and image

processing that deals with detecting instances of semantic objects of a certain class (such as

humans, buildings, or cars) in digital images and videos. Well researched domains of object

detection include face detection and pedestrian detection. Object detection has applications in

many areas of computer vision, including image retrieval and video surveillance. It is widely

used in computer vision task such as face detection, face recognition, video object co-

segmentation. It is also used in tracking objects, for example tracking a ball during a football

match, tracking movement of a cricket bat, tracking a person in a video.

Every object class has its own special features that helps in classifying the class – for

example all circles are round. Object class detection uses these special features. For example,

when looking for circles, objects that are at a distance from a point (i.e. the centre) are

sought. Similarly, when looking for squares, objects that are perpendicular at corners and

have equal side lengths are needed. A similar approach is used for face identification where

eyes, nose, and lips can be found and features like skin Colour and Distance Between Eyes

Can Be Found.

Object classification systems are used by Artificial Intelligence (AI) programs to

perceive specific objects in a class as subjects of interest. The systems sort objects in images

into groups where objects with similar characteristics are placed together, while others are

neglected unless programmed to do otherwise.

2.1 Existing Methods

Methods for object detection generally fall into either machine learning-based

approaches or deep learning-based approaches. For Machine Learning approaches, it

becomes necessary to first define features using one of the methods below, then using a

technique such as support vector machine (SVM) to do the classification. On the other hand,

deep learning techniques that can do end to-end object detection without specifically defining

features and are typically based on convolutional neural networks (CNN).

Deep Learning approach:

 2.1.1 Single Shot Multibox Detection The paper about SSD:

 6

 Single Shot MultiBox Detector (by C. Szegedy et al.) was released at the end

of November 2016 and reached new records in terms of performance and precision for object

detection tasks, scoring over 74% mAP (mean Average Precision) at 59 frames per second on

standard datasets such as PascalVOC and COCO. To better understand SSD, let’s start by

explaining where the name of this architecture comes from:

•	Single Shot: this means that the tasks of object localization and classification are done in a

single forward pass of the network

•	MultiBox: this is the name of a technique for bounding box regression developed by

Szegedy et al. (we will briefly cover it shortly)

•	Detector: The network is an object detector that also classifies those detected objects The

SSD object detection composes of 2 parts:

•	Extract feature maps.

•	Apply convolution filters to detect objects. Modified from SSD:

Single Shot MultiBox Detector SSD uses VGG16 to extract feature maps. Then it

detects objects using the Conv4_3 layer. For illustration, we draw the Conv4_3 to be 8 × 8

spatially (it should be 38 × 38). For each cell (also called location), it makes 4 object

predictions. Each prediction composes of a boundary box and 21 scores for each class (one

extra class for no object), and we pick the highest score as the class for the bounded object.

Conv4_3 makes a total of 38 × 38 × 4 predictions: four predictions per cell 10 regardless of

the depth of the feature maps. As expected, many predictions contain no object. SSD reserves

a class “0” to indicate it has no objects. Each prediction includes a boundary box and 21

scores for 21 classes (one class for no object).

Convolutional predictors for object detection:

SSD does not use a delegated region proposal network. Instead, it resolves to a very

simple method. It computes both the location and class scores using small convolution filters.

After extracting the feature maps, SSD applies 3 × 3 convolution filters for each cell to make

predictions. (These filters compute the results just like the regular CNN filters.) Each filter

outputs 25 channels: 21 scores for each class plus one boundary box. Apply a 3x3

 7

convolution filter to make a prediction for the location and the class. 11 For example, in

Conv4_3, we apply four 3 × 3 filters to map 512 input channels to 25 output channels.

 2.1.2 Region Proposals (R-CNN, Fast R-CNN, Faster R-CNN):

 In this, algorithms try to draw a bounding box around the object of interest to

locate it within the image. Also, you might not necessarily draw just one bounding box in an

object detection case, there could be many bounding boxes representing different objects of

interest within the image and you would not know how many beforehand. The major reason

why you cannot proceed with this problem by building a standard convolutional network

followed by a fully connected layer is that, the length of the output layer is variable — not

constant, this is because the number of occurrences of the objects of interest is not fixed. A

naive approach to solve this problem would be to take different regions of interest from the

image and use a CNN to classify the presence of the object within that region. The problem

with this approach is that the objects of interest might have different spatial locations within

the image and different aspect ratios. Hence, you would have to select a huge number of

regions and this could computationally blow up. Therefore, algorithms like R-CNN, YOLO

etc have been developed to find these occurrences and find them fast.

2.1.3 Resnet:

 To train the network model in a more effective manner, we herein adopt the

same strategy as that used for DSSD (the performance of the residual network is better than

that of the VGG network). The goal is to improve accuracy. However, the first implemented

for the modification was the replacement of the VGG network which is used in the original

SSD with ResNet. We will also add a series of convolution feature layers at the end of the

underlying network. These feature layers will gradually be reduced in size that allowed

prediction of the detection results on multiple scales. When the input size is given as 300 and

320, although the ResNet–101 layer is deeper than the VGG–16 layer, it is experimentally

known that it replaces the SSD’s underlying convolution network with a residual network,

and it does not improve its accuracy but rather decreases it.

RetinaNet, a one-stage detector, by using focal loss, lower loss is contributed by

“easy” negative samples so that the loss is focusing on “hard” samples, which improves the

prediction accuracy. With ResNet+FPN as backbone for feature extraction, plus two task-

specific subnetworks for classification and bounding box regression, forming the RetinaNet,

 8

which achieves state-of-the-art performance, outperforms Faster R-CNN, the well-known

two-stage detectors. ResNet is used for deep feature extraction.

Figure 2.1. Retina Net Detector Architecture

2.1.4 Yolov3:

 YOLOv3 (You Only Look Once, Version 3) is a real-time object detection

algorithm that identifies specific objects in videos, live feeds, or images. Versions 1-3 of

YOLO were created by Joseph Redmon and Ali Farhadi. The first version of YOLO was

created in 2016, and version 3, which is discussed extensively in this article, was made two

years later in 2018. YOLO is implemented using the Keras or OpenCV deep learning

libraries.

YOLO v3 algorithm consists of fully CNN and an algorithm for post-processing

outputs from neural network. CNNs are special architecture of neural networks suitable for

processing grid-like data topology. The distinctive feature of CNNs which bears importance

in object detection is parameter sharing. Unlike feedforward neural networks, where each

weight parameter is used once, in CNN architecture each member of the kernel is used at

every position of the input, which means learning one set of parameters for every location

instead a separate set of parameters. This feature plays important role in capturing whole

scene on the road.

 9

Figure 2.2. Overview of YOLOV3 algorithm.

Figure 2.3. YoloV3 Architecture

This algorithm starts with extraction single image from video stream, in a next step extracted

image is resized and that represent input to Yolo network. YOLO v3 neural network consist

of 106 layers. Besides using convolutional layers, its architecture also contains residual

layers, up sampling layers, and skip (shortcut) connections.

CNN takes an image as an input and returns tensor (see Fig 3) which represents:

 10

Figure 2.4. Bounding box prediction.

Coordinates and positions of predicted bounding boxes which should contain objects, A

probability that each bounding box contains object,

Probabilities that each object inside its bounding box belongs to a specific class.

The detection is done on the three separate layers. Object detection done at 3 different scales

addresses the issue of older YOLO neural network architectures, the detection of the small

objects. Output tensors from those detection layers have the same widths and heights as their

inputs, but depth is defined as: the number of bounding box properties such as width (bw),

height (bh), x and y position of the box (bx, by) inside the image, 1 is the probability that box

contains the detectable object (pc) and class probabilities for each of the classes (c1, c2, ...,

c5).

That sum is multiplied by 3, because each of the cells inside the grid can predict 3 bounding

boxes. As the output from the network, we get 10 647 bounding box predictions.

This network has an ability to simultaneously detect multiple objects on the single

input image. Features are learned during the network training process when the network

analyses the whole input image and does the predictions. In that way, the network has

knowledge about the whole scenery and objects environment, which helps the network to

perform better and achieve higher precision results comparing to the methods which use the

sliding window approach. The concept of breaking down the images to grid cells is unique in

YOLO, as compared to other object detection solutions. Predictions whose pc is lower than

 11

0.5 are ignored and that way, most of the false predictions are filtered out. Remaining

bounding boxes are usually prediction of the same object inside the image. They are filtered

out using the non max suppression algorithm.

Figure 2.5. Algorithm comparison

 12

CHAPTER 3

OBJECT DETECTION WITH PYTHON AND IMAGEAI

ImageAI is a Python library to enable ML practitioners to build an object detection

system with only a few lines of code.

Before we start, we need to install some of the dependencies that we will need to run ImageAI

properly. These dependencies are:

Numpy

pip install numpy==1.16.1

TensorFlow

pip install tensorflow==1.14.0

TensorFlow GPU

pip install tensorflow-gpu==1.14.0

Keras

pip install keras==2.2.4

OpenCV

pip install opencv-python

After installing all of those libraries, then we can start to install ImageAI library by typing the

following command in your prompt:

pip install imageai –upgrade

Next, we are ready to build our object detection system for image and for video.

3.1 Creating an Image Object Detection System

To start creating an image object detection system, first let’s import the libraries that
we’re going

to use and also set our current working directory.

 13

from imageai.Detection

importObjectDetection
import oscurrent_directory = os.getcwd()

As we want to implement an object detection in an easy and quick way, we will use a

pretrained model specific for object detection that has been trained on COCO dataset.

There are three different pretrained models that you can choose with ImageAI: RetinaNet,

YOLOv3, and tinyYOLOv3. You can download the model of your choice.

After you’ve downloaded the model, place the h5 file in the same directory as your Python

script. Your working directory should now has the following structure.

root_folder/
 python_script.py
 pretrain_model.h5

Back to our Python script, we now can instantiate the ObjectDetection class that we have

imported before. Depending on the model that you have downloaded before, we need to call a

proper method from ObjectDetection class. Below is the code implementation for that.

detector = ObjectDetection()# if you use RetinaNet model, call the following method
detector.setModelTypeAsRetinaNet()# if you use YOLOv3 model, call the following method
detector.setModelTypeAsYOLOv3()# if you use tinyYOLOv3 model, call the following
method
detector.setModelTypeAsTinyYOLOv3()

Next, we can start to load the model by first specifying the path to our model. Since our model

is in the same directory as our Python script, here I show you how to load the RetinaNet

model. If you use YOLOv3 or tinyYOLOv3, you need to change the file name of your h5 file

accordingly.

detector.setModelPath(os.path.join(current_directory ,
"resnet50_coco_best_v2.0.1.h5"))detector.loadModel()

Finally, we can start to create an image object detection system. To do this, we need to specify

two things: First, the directory and the filename of our input image and second, the directory

and the filename of the output image.

In the following code implementation, the input image will be an image

called ‘traffic.jpg’ that is located in the same directory as the Python script. Meanwhile, the

detection result will be saved in a file called ‘traffic_detected.jpg’ in the same directory.

 14

Detections = detector.detectObjectsFromImage(
input_image = os.path.join(current_directory, "traffic.jpg"),
output_image_path = os.path.join(current_directory , "traffic_detected.jpg")
)
for eachObject in detections:
 print(
 eachObject["name"] , " : ",
 eachObject["percentage_probability"], " : ",
 eachObject["box_points"])
 print("--------------------------------")

And that’s the code that we need to instantiate our image object detection system. Below is the

full code implementation of the steps that we have covered above:

from imageai.Detection import ObjectDetection

import os

current_directory = os.getcwd()

detector = ObjectDetection()

detector.setModelTypeAsRetinaNet()

detector.setModelPath(os.path.join(current_directory , "resnet50_coco_best_v2.0.1.h5"))

detector.loadModel()

detections = detector.detectObjectsFromImage(input_image=os.path.join(current_directory,
"traffic.jpg"),

 output_image_path=os.path.join(current_directory ,
"traffic_detected.jpg"))

for eachObject in detections:

 print(eachObject["name"] , " : ", eachObject["percentage_probability"], " : ",
eachObject["box_points"])

 print("--------------------------------")

If you run the complete code above, you’ll get more or less similar result on the image of your

choice.

 15

Figure 3.1. Input image without detection and output image indicating detection.

3.2 Tuning Image Object Detector

If you use the default value that we have seen in the implementation above, you might

think that somehow the result of the object detection is overcrowded, with several bounding

boxes overlapping one another.In order to reduce the clutter in the prediction result, you can

tune the object detector such that it only shows the object that really matters for you.Let’s use

the image above as an example. Let’s say I want the object detector to predict only the people

and the bicycle. To do this, we need to instantiate Custom Objects method. Then, we pass the

name of the objects that we want the system to detect as the argument.

custom = detector.CustomObjects(person=True, bicycle=True)

Next, we can start to build the object detection system

with detectCustomObjectsFromImage method. We pass our custom variable, the path and

name of our input image, as well as the path and name of our output image.

detections = detector.detectCustomObjectsFromImage(
custom_objects = custom,
input_image = os.path.join(current_directory, "traffic.jpg"),
output_image_path = os.path.join(current_directory , "traffic_detected.jpg")
)

Moreover, we can also further remove the clutter by ignoring the predictions that have

probability values below a certain threshold value. Let’s say that you want to ignore the

predictions with probability value below 70%. You can do that by adding

 16

the minimum_percentage_probability argument in

the detectCustomObjectsFromImage method.

detections = detector.detectCustomObjectsFromImage(
custom_objects = custom,
input_image = os.path.join(current_directory, "traffic.jpg"),
output_image_path = os.path.join(current_directory , "traffic_detected.jpg"),
minimum_percentage_probability = 70
)

Below is the complete code implementation when we want to detect only people and bicycle

from our image, and we also only want to show the detection where the probability value is

above 70%.

from imageai.Detection import ObjectDetection

import os

current_directory = os.getcwd()

detector = ObjectDetection()

detector.setModelTypeAsRetinaNet()

detector.setModelPath(os.path.join(current_directory , "resnet50_coco_best_v2.0.1.h5"))

detector.loadModel()

custom = detector.CustomObjects(person=True, bicycle=True)

detections = detector.detectCustomObjectsFromImage(

 custom_objects = custom,

 input_image = os.path.join(current_directory, "traffic.jpg"),

 output_image_path = os.path.join(current_directory , "traffic_detected.jpg"),

 minimum_percentage_probability = 70

)

for eachObject in detections:

 print(eachObject["name"] , " : ", eachObject["percentage_probability"], " : ",
eachObject["box_points"])

 17

 print("--------------------------------")

If you run the code above, you’ll get more or less the result like this:

Figure 3.2. Detection of class objects with their accuracies.

And that’s it! With just a few lines of code now you can implement an object detection system

for your own image. However, what if you want to detect objects in a video or even from your

webcam instead of an image? Let’s find out how to create a similar object detection for video

with ImageAI in the next section.

3.3 Creating a Video Object Detection System

Believe it or not, the code to create a video object detection system with ImageAI is

pretty much similar with the image object detection system we’ve built before. All we need to

do is changing 3 lines of code.

The first one is the library that we should import. So instead of ObjectDetection , we need to

import VideoObjectDetection .

from imageai.Detection import VideoObjectDetection

The second change that we should apply is the step where we instantiate object detection

class. Instead of using ObjectDetection() , we should use VideoObjectDetection() .

detector = VideoObjectDetection()

 18

Next, the third or the final change that we should apply is when we create the object detection

system. In our previous code, we use detectObjectsFromImage method. If we want to detect

objects from a video, we need to use detectObjectsFromVideo instead.

detections = detector.detectObjectsFromVideo(
 input_file_path=os.path.join(current_directory, "footage.mp4"),
 output_file_path=os.path.join(current_directory,"footage_detected")
)

As you can see, the argument that we need to pass into this method is still the same as before.

First, we need to specify the path to our video directory and the filename of our video. Second,

we also need to specify the path and the filename of the output video.

Below is the entire code implementation to create a video object detection system.

from imageai.Detection import VideoObjectDetection
import os
current_directory = os.getcwd()
detector = VideoObjectDetection()
detector.setModelTypeAsRetinaNet()
detector.setModelPath(os.path.join(current_directory , "resnet50_coco_best_v2.0.1.h5"))
detector.loadModel()
detections =
detector.detectObjectsFromVideo(input_file_path=os.path.join(current_directory,
"footage.mp4"),
output_file_path=os.path.join(current_directory , "footage_detected"),
frames_per_second=20, log_progress=True)

Now if you run the code implementation above, you’ll get more or less similar result as below.

 19

Figure 3.3. Complete output of the detected objects with greater accuracy.

Note: if you somehow don’t get the same color format in your output video, i.e you get the

output video that is in BGR format instead of RGB format, you can use the code below to

convert the output video back to RGB format.

All you need to do is specifying the path and the filename of the video that you want to

convert as well as the converted video.

import cv2

import os

current_directory = os.getcwd()

Change the path and filename of your input video with its extension

video_path = os.path.join(current_directory , 'footage_detected.avi')

vs = cv2.VideoCapture(video_path)

output_video = None

while True:

 (frame_exists, frame) = vs.read()

 20

 if not frame_exists:

 break

else:

 new_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

 key = cv2.waitKey(1) & 0xFF

Write the both outputs video to a local folders

 if output_video is None:

 fourcc1 = cv2.VideoWriter_fourcc(*"MJPG")

 # Change the path and filename of your output video with .avi extension

 output_video = cv2.VideoWriter(os.path.join(current_directory ,
'footage_detected_corrected.avi'), fourcc1, 25,(new_frame.shape[1], new_frame.shape[0]),
True)

 elif output_video is not None:

 output_video.write(new_frame)

 if key == ord("q"):

 break

vs.release()

output_video.release()

cv2.destroyAllWindows()

3.4 Tuning Video Object Detection
Same as our image object detection system, we can also fine tune our video object

detection system a little bit. We have the option to pick which objects that we want to detect

and to select the threshold for the probability value that should be displayed.

Let’s say we want to only detect people and bicycle for our video object detection system.

Also, we only want to show the detections that have the probability value above 70%. We can

do so by first instantiating a variable to store the objects that we want to observe.

custom = detector.CustomObjects(person=True, bicycle=True)

 21

Next, we can create our video object detection system with our custom objects. To do so, we

call the detectCustomObjectsFromVideo method. For the arguments of this method, we pass

our custom variable, path and filename of our input and output video, frames per second, as

well as the minimum threshold for probability value.

 detections = detector.detectCustomObjectsFromVideo(
 custom_objects = custom,
 input_file_path=os.path.join(execution_path, "footage.mp4"),
 output_file_path=os.path.join(execution_path, "footage_detected"),
 frames_per_second=20, log_progress=True,
 minimum_percentage_probability = 70)

Below is the complete code implementation if you want to only detect people and bicycle

which has a probability value above 70%.

from imageai.Detection import VideoObjectDetection

import os

current_directory = os.getcwd()

detector = VideoObjectDetection()

detector.setModelTypeAsRetinaNet()

detector.setModelPath(os.path.join(current_directory , "resnet50_coco_best_v2.0.1.h5"))

detector.loadModel()

custom = detector.CustomObjects(person=True, bicycle=True)

detector = detector.detectCustomObjectsFromVideo(

 custom_objects = custom,

 input_file_path=os.path.join(current_directory, "footage.mp4"),

 output_file_path=os.path.join(current_directory, "footage_detected"),

 frames_per_second=20, log_progress=True,

 minimum_percentage_probability = 70)

 22

3.5 Creating Video Object Detection from Webcam
Now what if you want to create an object detection system with your camera feeds as

your input? Creating this system with ImageAI is also very straightforward. The code itself is

very much similar with our video object detection system. You only need to add one line of

code and also change one line of code to do this.

First, we need to create a variable to instantiate the OpenCV library to capture the frame

directly from our webcam.

camera = cv2.VideoCapture(0)

Finally, we need to change the argument in detectObjectsFromVideo method. Instead of

specifying the input file path, we need to specify our camera input, which is

the camera variable that we’ve created above.

detections = detector.detectObjectsFromVideo(
 camera_input = camera,
 output_file_path = os.path.join(current_directory,"camera_detected_video"),
 frames_per_second=20, log_progress=True)

Below is the complete code implementation to create an object detection system directly from

your webcam.

from imageai.Detection import VideoObjectDetection

import os

import cv2

current_directory = os.getcwd()

camera = cv2.VideoCapture(0)

detector = VideoObjectDetection()
detector.setModelTypeAsRetinaNet()

detector.setModelPath(os.path.join(current_directory , "resnet50_coco_best_v2.0.1.h5"))
detector.loadModel()

detections = detector.detectObjectsFromVideo(
 camera_input = camera,
 output_file_path = os.path.join(current_directory, "camera_detected_video"),
 frames_per_second = 20, log_progress=True)

 23

Again, if you somehow get the a different color format in your output video, you can use the

aforementioned code to convert the output from BGR to RGB format.

3.6 Closing Remarks
Now you already know how to create a quick and easy object detection system with

ImageAI. As you have seen, ImageAI library enables us to build an object detection system

without having to deal with the complexity behind object detection model like ResNet or

YOLO.

Note that with the pretrained model supported by ImageAI, the object detector can detect 80

different objects. These objects are:

person, bicycle, car, motorcycle, airplane, bus, train, truck, boat, traffic light, fire hydrant,

stop_sign, parking meter, bench, bird, cat, dog, horse, sheep, cow, elephant, bear,zebra, giraffe,

backpack, umbrella, handbag, tie, suitcase, frisbee, skis, snowboard, sports ball, kite, baseball bat,

baseball glove, skateboard, surfboard, tennis racket, bottle, wine glass, cup, fork, knife, spoon,

bowl, banana, apple, sandwich, orange, broccoli, carrot, hot dog, pizza, donot, cake, chair, couch,

potted plant, bed, dining table, toilet, tv, laptop, mouse, remote, keyboard, cell phone,

microwave, oven, toaster, sink, refrigerator, book, clock, vase, scissors, teddy bear, hair dryer,

toothbrush.

 24

CHAPTER 4

SYSTEM DESIGN

4.1 Procedure

I. Install TensorFlow-GPU and all required libraries

II. Set up Object Detection directory structure and Google collab Environment

III. Gather and label pictures

IV. Generate training data

V. Create label map and configure training

VI. Train object detector

VII. Test it out.

VIII. Extract Licence plate number

IX. Generate E-challan

4.2 Flowchart of Proposed System

Figure 4.1. Flowchart of the System.

4.3 System Requirements

4.3.1 Major Software’s and Libraries Used

 25

1. Google Collab
Google Collab is a free Jupyter notebook environment that runs entirely in the cloud.

Most importantly, it does not require a setup and the notebooks that you create can be

simultaneously edited by your team members - just the way you edit documents in

Google Docs. Collab supports many popular machine learning libraries which can be

easily loaded in your notebook.

As a programmer, we can perform the following using Google Collab:

• Write and execute code in Python

• Document your code that supports mathematical equations

• Import/Save notebooks from/to Google Drive

• Integrate PyTorch, TensorFlow, Keras, OpenCV

• Free Cloud service with free GPU

2. Python: The programming style of Python is simple, clear and it also contains

powerful different kinds of classes. Moreover, Python can easily combine other

programming languages, such as C or C++. As a successful programming language, it

has its own advantages: 	

• Simple and easy to learn 	

• Open source 	

• Scalability 	

3. OpenCV: OpenCV (Open source computer vision) is a library of programming

functions mainly aimed at real- time computer vision. The library is cross-platform

and free for use under the open-source BSD license. OpenCV supports the deep

leaning framework TensorFlow, Torch/PyTorch and caffe.

4. NumPy: In Python, there is data type called array. To implement the data type of

array with python, NumPy is the essential library for analysing and calculating data.

They are all open source libraries. NumPy is mainly used 22 for the matrix calculation

5. Pandas , Matplotlib: pandas is a fast, powerful, flexible and easy to use open source

data analysis and manipulation tool,built on top of the Python programming language.

Matplotlib is a comprehensive library for creating static, animated, and interactive

visualizations in Python. Matplotlib makes easy things easy and hard things possible.

6. Pillow: Python Imaging Library (abbreviated as PIL) (in newer versions known as

Pillow) is a free and open-source additional library for the Python programming

 26

language that adds support for opening, manipulating, and saving many different

image file formats.

The Python Imaging Library adds image processing capabilities to your Python

interpreter. This library provides extensive file format support, an efficient internal

representation, and powerful image processing capabilities. The core image library is

designed for fast access to data stored in a few basic pixel formats. It should provide a

solid foundation for a general image processing tool.

7. TensorFlow: TensorFlow, an open-source software library for dataflow programming

across a range of tasks. It is a symbolic math library and is also used for machine

learning applications such as neural networks. It is used for both research and

production at Google. Its flexible architecture allows for the easy deployment of

computation across a variety of platforms (CPUs, GPUs, TPUs), and from desktops to

clusters of servers to mobile and edge devices. TensorFlow computations are

expressed as stateful dataflow graphs. The name TensorFlow derives from the

operations that such neural networks perform on multidimensional data arrays. These

arrays are referred to as "tensors".

Why TensorFlow for Object Detection:

• It allows Deep Learning. 	

• Known as the second-generation machine learning system, it performs numerical

computations through data flow graphs. 	

• It is open source and free. 	

• It is reliable (and without major bugs). 26 	

• It is backed by Google and a good community. 	

• It is a skill recognized by many employers. 	

• It is easy to implement. 	

• With capability of running on CPUs and GPUs, it can be deployed in broad range of

products of Google such as Speech Recognition, Google Photos, Gmail and even

Search.	

ImageAI: is a python library built to empower developers, researchers and students to build

applications and systems with self-contained Deep Learning and Computer Vision

capabilities using simple and few lines of code.	

 27

Keras: Keras is an open source neural network library written in Python. It can run on top of

TensorFlow, Microsoft Cognitive Toolkit, or Theano Designed to enable fast

experimentation with deep neural networks, it focuses on being user-friendly, modular, and

extensible Keras.This is done via the keras preprocessing image.ImageDataGenerator

class.

This class allows you to configure random transformations and normalization operations to

be done on your image data during training instantiate generators of augmented image

batches (and their labels) via .flow(data, labels) These generators can then be used with the

Keras model method that accepts datainputs, fit_generator, evaluate_generator and

predict_generator.

Selenium Web driver: Selenium is an umbrella project for a range of tools and libraries that

enable and support the automation of web browsers. Selenium supports automation of all the

major browsers in the market using WebDriver. WebDriver is an API and protocol that

defines a language-neutral interface for controlling the behavior of web browsers.

Web scraping is a technique which could help us transform HTML unstructured data into

structed data in spreadsheet.

Refers to both the language bindings and the implementations of the individual browser

controlling code. This is commonly referred to as just WebDriver. Selenium WebDriver is

aW3C Recommendation.

▪ WebDriver is designed as a simple and more concise programming interface.

▪ WebDriver is a compact object-oriented API.

▪ It drives the browser effectively.

 		

 28

CHAPTER 5

SYSTEM IMPLEMENTATION

One important element of deep learning and machine learning at large is dataset. A good

dataset will contribute to a model with good precision and recall. In the realm of object

detection in images or motion pictures.

• For Motorcycle detection: we used trained model with COCO Dataset with accuracy

of 99%.

• For Helmet Detection: We created our own Yolov3 Model with our own dataset

with 1000+ images of helmet and non-helmet riders.

• For License plate: We used API for extraction and web automation for getting

details for E- Challan Generation.

5.1 Model for Motorcycle Detection:

Coco Dataset for Motorcycle Detection: COCO is a large-scale object detection,

segmentation, and captioning dataset. This version contains images, bounding boxes " and

labels for the 2017 version. Coco defines 80 classes.

COCO stands for Common Object Context. The COCO dataset contains the images which

are captured in our daily life scenes. COCO provides multi-object labeling, segmentation

mask annotations, image captioning, key-point detection and panoptic segmentation

annotations with a total of 80 categories, making it a very versatile and multi-purpose dataset.

As we have mentioned above that the COCO dataset contains a total of 80 categories, we

import the required libraries that are required to access the COCO dataset. The input contains

many objects like Buses, Cars, and Motorcycles etc. The libraries imported will helps divide

the required objects from all other objects and the detected objects will be given certain IDs to

access them later. Coco.GetObjectIds is a function used to get the IDs for the differentiated

objects.

The 80 categories are as follows:

 29

Table 5.1. COCO dataset objects

Person Bicycle Car Motorcycle Airplane

Bus Train Truck Boat Traffic light

Fire
hydrant

Stop sign Parking
meter

Bench Bird

Cat Dog Sheep Cow Elephant
Bear Zebra Giraffe Backpack Umbrella

Handbag Tie Suitcase Frisbee Skis
Snowboard Sports ball Kite Baseball

bat
Baseball

glove
Skateboard Surfboard Tennis

racket
Bottle Wine glass

Cup Knife Spoon Bowl Banana
Apple Sandwich Orange Broccoli Carrot

Hotdog Pizza donot Cake Chair

Couch Potted plant Bed Dining
table

Toilet

Tv Laptop Mouse Remote Keyboard
Cell phone Microwave Toaster Sink Refrigerator

Book Clock Vase Scissors Teddy bear

Hair dryer Toothbrush Fork Horse oven

Now the question is what if you want to create custom dataset object detection.

Steps for creating a custom dataset for object detection:
Ø Annotate data

Ø Convert annotation files to COCO dataset format

Ø Train an instance segmentation model with mmdetection framework

Framework: Darknet is an open source neural network framework written in C and CUDA.

YOLO first takes an input image.The framework then divides the input image into grids (say

a 3 X 3 grid) Image classification and localization are applied on each grid. YOLO then

predicts the bounding boxes and their corresponding class probabilities for objects (if any are

found, of course). It is fast, easy to install, and supports CPU and GPU computation.

 30

In our case, the framework is done in such a way that the motorcycle which is detected will

be divided into three frames.

One contains the complete motorcycle image for future reference, the second contains the

upper part of the motorcycle image for helmet detection and the final part contains the lower

part for license plate recognition.

5.2 Model for Helmet Detection:

 le

 Figure 5.1.lFlowchart for Helmet Model c

I5.2.1 Procedure for training a YOLOV3 HELMET model

Gathering images (Creating data set): To detect a bike rider with helmet or without

helmet. We need bunch of images of bike-riders with helmet, bike-rider without helmet and

bike license plate. In this project, we used 1000+ images.

 31

 Helmet Images Non Helmet Images

Figure 5.2. Helmet dataset

Label Images:

Label the all images with the help of LableImg tool. In this project, Helmet class

was created with the help of LableImg tool. Create .xml file corresponding to each image

with the above following categories of classes

Now that our dataset labels are in the required format, we need to create a train-test split. I

chose to create a test set containing 10% of the images in the dataset. Configuring YOLO

with your dataset. Now that we have created our train and test sets, we need to make some

changes to train the YOLO model on the dataset.

Training:

Now that our dataset is ready to use, we can begin training. Before we start, compile

the darknet repository with the make command. To compile with specific options, such as

GPU, CUDNN and OPENCV. This will create a darknet executable. Trained weights for

model. You can set other parameters (learning rate, momentum, weight decay etc by editing

the corresponding lines). Finally, model is ready to use.

5.3 Number plate Detection

Platerecognizer: is an open source Automatic License Plate Recognition library

written in C++ with bindings in C#, Java, Node.js, and Python. The library analyses images

and video streams to identify license plates. The output is the text representation of any

license plate characters.

 32

The ASP.NET Web API is an extensible framework for building HTTP based

services that can be accessed in different applications on different platforms such as web,

windows, mobile etc. It works more or less the same way as ASP.NET MVC web

application except that it sends data as a response instead of html view. It is like a web

service or WCF service but the exception is that it only supports HTTP protocol.

Figure 5.3. Working of Web API

Web API Version Supported .NET Framework Coincides with Supported in
Web API 1.0 .NET Framework 4.0 ASP.NET MVC 4 VS 2010
Web API 2 - Current .NET Framework 4.5 ASP.NET MVC 5 VS 2012, 2013

Table 5.2. ASP.NET Web API Versions

Table Plate Recognizer Snapshot API! You can use our API to access our API endpoints,

which can read license plates from images. Plate Recognizer provides accurate, fast,

developer-friendly Automatic License Plate Recognition (ALPR) software that works in all

environments.

The software can be used in many ways:

1. Recognize license plates from camera streams. The results are browsable, searchable, and can

trigger alerts. The data repository can be in the cloud or stored entirely within your on-site

network.

2. Recognize license plates from camera streams and send the results to your own application.

3. Integrate license plate recognition into your application directly in-code.

5.4 Automated E-Challan Generation

 33

Further this Detected LP Numbers are injected to RTO Database for extracting the

further details of the Violator. Now, we do Automation of web Browser, to get the details of

offender from RTO Database.

1. Selenium is an umbrella project for a range of tools and libraries that enable and

support the automation of web browsers. Selenium supports automation of all the

major browsers in the market using WebDriver.

2. WebDriver is an API and protocol that defines a language-neutral interface for

controlling the behavior of web browsers. Web scraping is a technique which could

help us transform HTML unstructured data into structed data in spreadsheet.

3. With Pillow Image Library, with extracted details saved in excel sheet an automatic

E-challan is generated with details Including Date and time & further it can be sent

through message, mail or post

5.5 Triple Riding Detection

5.5.1 Proposed Model

The system consists of a main subsystem: setting up the environment, training,

testing the model and getting the accurate coordinates of the vehicle that comes along

with the system. The Proposed system of triple riding is illustrated in Fig. 5.4. The

imposing challans or fines with an automated push of the data to the respective user

account comes as an extension to the system.

 34

Figure 5.4. Proposed Model of triple riding detection

5.5.2. Traffic rule violation recognition system

 The system mainly uses the deconvolutional approach of deep learning along

with the deep learning framework Darknet and the object detection algorithm YOLOv3

performs the various functionalities like detection, recognition, and Identification, followed

by classification. The subsystem having the support of the image, video and live feed as the

input, enables the system to process all kinds of data. Having the image and video input

assessment as an extension, the live feed of the camera modules deployed at the junctions

processes every single frame. Every single frame is subjected to the detection of various

objects. In our prototype model, the various objects that were subjected to the process of the

training are the bike and the person. The two objects bike, and person are the most important

aspects of the focus.

The detection process of the YOLO model makes use of the target regression as a regression

problem for the spatially separate target box and confidence.

1. The YOLO first divides the image into convolutions of size NxN like 13x13, and the

size of each of the NxN cells depends on the size of the input.

2. Each cell of these NxN cells is responsible for predicting the number of bounding

boxes in the input image.

 35

3. For every box in the input, the deconvolutional network predicts the confidence that

the bounding box contains the object and the probability of the enclosed object being

from one of the classes mentioned in the configuration file.

4. After that, it applies the Non-Max Suppression to remove the bounding boxes with

less confidence value.

5. The processed images are subject to the Intersection over union function developed to

find out the relation between the persons detected in the frame along with the

motorbike. Thereby, marking the rectangular bounding box with triple riding as the

label.

 Figure 5.5. Test image for triple riding.

5.5.3 YOLOv3 (You Only Look Once):

YOLO is an incremental approach, in this the third version of the YOLO is used.

This comes with an incremental improvement from the initial YOLO. The YOLO algorithm

forwards the image as a whole only once through the network. On the other hand, The Single

Shot Detector (SSD) also takes the entire image at the same time, but YOLOv3 performs

much faster, while achieving a better accuracy.

The YOLOv3 system has been trained on the COCO dataset which was available on the

internet, capable of detecting various classes. The following figures depict the working of the

model, Figs. 2 is the test images for the triple riding whereas Fig. 3 is the test image for the

non-triple riding.

 36

 Figure 5.6. Test image for non-triple riding detection

5.5.4 COCO dataset:

 Microsoft Common Objects in context (MS COCO) dataset has 91 common

object groups. This dataset has 2,500,000 labeled instances in 328,000 images. This dataset is

very extensively used for training because it has images of everyday scenes in their natural

environment. Objects have been labeled using per-instance segmentation to help in achieving

accurate object localization. This dataset contains images of 91 object types. While MS

COCO has fewer categories than ImageNet and SUN, it has more instances per category.

5.5.5 Training and testing data:

For training purposes, COCO dataset is being used as it provides us 2,500,000

labeled instances in 3,28,000 images. The alternative would have been to collect data and

label it manually, using COCO dataset helps us avoid this work. DPMv5-P is the

performance reported in VOC release 5. DPMv5-C uses the same implementation but is

trained using MS COCO dataset. For testing purposes, 1000 unseen images were used. Figure

4 shows a sample of detecting triple riding on which the model was tested on.

 5.5.6 License plate detection:

 If the offender is found with triple riding, there is no need for this step.

However, if the offender is found, then the motorcycle image is given as input to the license

plate detection phase Fig.5. Where the image is passed to this library to detect the License

Plate Number and Return it and Store it for Further use.

Plate Recognizer: It is an open source Automatic License Plate Recognition library. The

library analyzes images and video streams to identify license plates. The output is the text

representation of any license plate characters. Further

 37

These Detected LP Numbers are injected to the Database for extracting the further details of

the Violator.

Figure 5.7. License Plate detection

The system is tested on images that have triple riding as well as images that do not have triple

riding to check how accurate our system is. The system detects triple riders and puts a

bounding box on them and labels them as triple riders. The accuracy of our model is 80%

with an F1 score of 0.847 and also the precision value of our system is 0.8. Implementation

of this kind of system will increase general awareness and hence reduce accidents.

 5.5.7 E-Challan for Triple Riding:

 After detection of the license plate number, the system generates E-challan to

the offenders by accessing the database for their details. It sends the message through E-mail

of the offender.

 38

CHAPTER 6

WORKFLOW & SYSTEM TESTING

6.1 Account Setup Gdrive

 InGooglecollab Editor, First, upload all required data into google drive and now sync

Gdrive with collab editor.

Figure 6.1. Google Drive Login

Create PROJECT Folder:

• Motorcycle_Detection_Model File 	

• Helmet Detection Model File 	

• Final Outputs (Folder) 	

Subfolders

▪ Full Frame Image ▪ Bikes Image

▪ Rider Image

• Challan (Folder) 	

• Chrome WebDriver.exe 	

Importing Required Libraries

 39

Figure 6.2. Importing libraries

• In this section we explain different processing steps. initial phase, frames are

collected at regular intervals from video file and passed into detection model for

processing.

• All these techniques are subjected to predefined conditions and constraints, especially

the license plate number extraction part. Since, this work takes video as its input, the

speed of execution is crucial. We have used above said methodologies to build a

holistic system for both helmet detection and license plate number extraction.

6.2 Detection of Motorcycle

 Figure 6.3. (a) Code for Motorcycle Detection

 40

Figure 6.3. (b) Continuation of Code for Motorcycle Detection

The frame chosen is given as input to YOLOv3 Motorcycle detection model, where the

classes to be detected are “Motorcycle‟. At the output, image with required class detection

along with confidence of detection through bounding box and probability value is obtained as

shown in the Fig 6.4(a) and Fig 6.4(b). Here frame with ‘motorcycle’ classes detected.

 Rear View Front View

Figure 6.4. (a) Frame-1 Case 1 Figure 6.4. (b) Frame-2 Case 2

 41

The details of these extracted images which is stored in a dictionary which can be later used

for further processing.

Output for each object: [{'name': 'motorcycle', 'percentage_probability':89.4, 'box_points':

[104, 84, 265, 400]}

With the help of functions given by Image AI library, only the detected objects are extracted

as shown below, and stored as separate images and named with class name and image

number in order.

We crop these detected frames in 3 formats:

1. Full Image with motorbike and rider

2. Bike Image

3. Rider Image

For example, it will be saved as Full-1, Full-2, etc. || Bike-1, Bike-2...etc. || Rider-1, Rider-

2...etc.

 Rider-1.jpg Bike-1.jpg Full-1.jpg Rider-2.jpg Bike-2.jpg Full-2.jpg

Figure 6.5. Helmet ROI cropping.

 42

6.3 Detection of Helmet:

Figure 6.6. Code for Helmet Detection.

 43

 Once the Motorcycle class is obtained, the Rider images is given as input to Helmet

detection model. While testing the helmet detection model, some false detections were

observed. So, the person image was cropped to get only top one-fourth portion of image, as

shown in Fig. 2 (Rider.jpg). This ensures that false detection cases are eliminated as well as

avoid cases leading to wrong results when the rider is holding helmet in hand while riding or

keeping it on motorcycle while riding instead of wearing.

Now two cases Arise:

Case 1: When the motorcycle rider is wearing helmet

Case 2: When the motorcycle rider is not wearing helmet

Helmet Detection Model:

 Rider-1.jpg Rider-2.jpg

 Case-1 Case-2

Figure 6.7. Helmet yolov3 prediction

After applying cropped image to helmet detection model, output is as shown. The bounding

box around helmet along with the detection probability is displayed as shown in (Rider-

2.jpg). As the rider wearing helmet in Case 2, no further processing is necessary. Since in

Case 1, rider is not wearing helmet, no bounding box is created.

 44

6.4 Detection of Triple Riding

Figure 6.8. Code for Triple Riding Detection.

 45

Figure 6.9. Output for Triple Riding Detection.

6.5 Detection of Number Plate

Figure 6.10. Code for Number Plate Recognition

 46

If the helmet is found, there is no need for this step. However, if the helmet is not found, then

the motorcycle image is given as input to license plate detection phase. Where the image is

passed to this library to detect the License Plate Number and Return it and Store it for Further

use.

Platerecognizer is an open source Automatic License Plate Recognition library. The library

analyzes images and video streams to identify license plates. The output is the text

representation of any license plate characters. Further this Detected LP Numbers are injected

to Database for extracting the further details of the Violator.

Figure 6.11. Database created in Spreadsheet.

Figure 6.12. Number plate recognition

 47

Figure 6.13. Extraction of details using Google Sheets.

Now, to get the details of offender the model searches from created Database.

Selenium supports automation of all the major browsers in the market using WebDriver.

WebDriver is an API and protocol that defines a language-neutral interface for controlling the

behaviour of web browsers.

Web scraping is a technique which could help us transform HTML unstructured data into

structed data in spreadsheet.

6.6 E-Challan Generation

 48

Figure 6.14. Code for E-Challan Generation.

With Pillow Image Library, with extracted details saved in excel sheet an automatic E-

challan is generated with details Including Date and time & further it can be sent through

message, mail or post.

 49

Figure 6.15. Challan for No Helmet Violation

Figure 6.16. Challan for Triple Riding Violation.

 50

6.7 RELIABILITY

 The system developed is analysed in terms of its efficiency of producing the output

with accurate detection of objects.

Table 6.1. Analysis of the model
Model Efficiency

Bike Detection 95%
Helmet Detection 70%

Triple Riding 80%
License Plate Recognition 70%

Here in the Table2, the helmet is detected with 70% accuracy because during the detection

process if the model encounters obstacles like the signboards, turbans, caps, etc, in the

processed frame, it is treated as the helmet. As for triple riding, the accuracy is 80%, the same

obligations as helmet detection is observed in this case. The license plate identification is

purely based on the resolution of the camera. The camera that we used has a 720p definition

and we were able to detect the characters accurately on the license plate. But in some of the

cases, one or two characters were misread. Ideally, we recommend a resolution of 1080p

especially for license number recognition and, 720p in case of a helmet and triple riding.

About the statistics of the project, the detection process is rapid. The video taken has a

duration of 54sec and a total frame of 1360. The model took around 1min 8sec to extract the

video. Out of the total frames 23 frames are used for the implementation. Detection of bikes

took 220 sec and the helmet detection took 17 sec for 8 frames. Triple Riding Detection

processed 3 images in 8 sec. At last, license plate recognition and sending of the challan took

approximately 2 sec per image. The total time taken for this whole process is 5 min 5sec.

These are purely the observations taken for the prototype developed. The duration varies for

real-time surveillance videos. The objective with which the system is proposed has achieved

satisfactory results.

 51

FUTURE WORK:

 The system implemented is a prototype. It can be expanded to process the day-to-day

traffic video by attaining the permissions of the required authorities. A large database is

created to maintain the records of the violators and their payment of the challans being

monitored every few minutes. Also, the identification of the license plate becomes the core

part of this project. So, a camera of high resolution is recommended to maintain precision and

accuracy. For sending the challan directly to offender’s mobile numbers, the subscriptions for

SMS are required, as of now it is sent through mail ids, but the motto to send the challan to

their mails as well as through SMS along with their violation photo, time and date. Our

system is developed to process the above-mentioned future implementations.

 52

CONCLUSION:
 A Non-Helmet Rider and Triple Riding Detection system is developed where a video

file is taken as input. If the motorcycle rider in the video footage is not wearing helmet while

riding the motorcycle, or riding with three members, then the license plate number of that

motorcycle is extracted and displayed for above cases separately. Object detection principle

with YOLO architecture is used for motorcycle, person, helmet and license plate detection.

Google Spreadsheet is used for license plate number extraction if rider is not wearing helmet

or triple riding. The characters are extracted from LP so that it can be used for other purposes.

All the objectives of the project is achieved satisfactorily.

 53

REFERENCES:

[1] H. Li and C. Shen, “Reading car license plates using deep convolutional neural networks

and LSTMs”, arXiv preprint arXiv:1601.05610, 2016.

[2] C. Vishnu, D. Singh, C. K. Mohan, and S. Babu, "Detection of motorcyclists without

helmet in videos using convolutional neural network," 2017 International Joint Conference

on Neural Networks (IJCNN).

[3] How to Create a Simple Object Detection System with Python and ImageAI-by Ruben

Winastwan.

[4] Wang H, Yu Y, Cai Y, Chen L, Chen X (2018) A vehicle recognition algorithm based

on deep transfer learning with a multiple feature subspace distribution. Sensors 18(12):4109.

[5] Satya (2018) Deep learning based object detection using YOLOv3 with OpenCV

(Python/C++). https:// www.learnopencv.com/deep-learning-based-object-detection-using-

yolov3-with-opencv-python-c/.

[6] Raj KD, Chairat A, Timtong V, Dailey MN, Ekpanyapong M (2018) Helmet violation

processing using deep learning. In: 2018 International workshop on advanced image

technology. IEEE, IWAIT, pp 1–4.

[7] Redmon (2018) Darknet: open-source neural networks in c. http://pjreddie.com/darknet/.

[8] Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-

time object detection. In: Proceedings of the IEEE conference on computer vision and pattern

recognition, pp 779–788.

[9] Desai M, Khandelwal S, Singh L, Gite S (2016) Automatic helmet detection on public

roads. Int J Eng Trends Technol (IJETT) 35:185–188.

[10] E-challan generation – how to send emails using python – smtplib by johan godinho.

 54

[11] Gokhale M, Wagh R, Chaudhari P, Khairnar S, Jadhav S (2018) Iot based e-tracking

system for waste management. In: 2018 Fourth international conference on computing

communication control and automation (ICCUBEA). IEEE, pp 1–6.	

	

[12] Girish G. Desai, Prashant P. Bartakke, Real-Time Implementation Of Indian License

Plate Recognition System IEEE Xplore 2019.

