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ABSTRACT 

 
Violations in traffic laws are very common in a highly populated country like India. The 

accidents associated with these violations cause a huge loss to life and property. Since utilization 

of bikes is high, mishaps associated with bikes are additionally high contrasted with different 

vehicles. One of the main causes of these is not using motorcycle helmets. So we propose an 

approach called “TRAFFIC VIOLATION PROCTORING SYSTEM:HELMET AND TRIPLE 

RIDING DETECTION” using deep learning which automatically sends challan or send an SMS 

for individuals in case of identification of bicycle riders without headgear and who are triple 

riding utilizing surveillance videos in real-time. The proposed approach initially recognizes 

motorcycle riders utilizing background subtraction and object segmentation. At that point we 

utilize object classifier to classify violators. 

Since wearing helmet is critical while driving, our main aim is to decrease the danger of 

injuries in case of accident. By detecting the motorcyclists without helmets, triple riding or other 

violations we can therefore increase their safety while on road. Hence by automating we reduce 

the workload on the traffic control team and will be able to share the evidence with the team 

efficiently to impose fines on violators. 
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CHAPTER 1 

INTRODUCTION 

All over the world around 1.35 million lives are lost each year, 50 million people are 

getting injured due to road accidents, according to a report titled “ The Global status Revised 

Manuscript Received on December 05, 2019 report on road safety 2018” released by world 

health organization. It is very hard to imagine that this burden is unevenly borne by 

motorcyclists, cyclists, and pedestrians. This report noted that a comprehensive action plan 

must be set up in order to save lives.  

Two-wheeler is a very popular mode of transportation in almost every country. 

However, there is a high risk involved because of less protection. When a two-wheeler meets 

with an accident, due of sudden deceleration, the rider is thrown away from the vehicle. If 

head strikes any object, motion of the head becomes zero, but with its own mass brain 

continues to be in motion until the object hits inner part of the skull. Sometimes this type of 

head injury may be fatal in nature. In such times helmet acts as life saviour. Helmet reduces 

the chances of skull getting decelerated, hence sets the motion of the head to almost zero. 

Cushion inside the helmet absorbs the impact of collision and as time passes head comes to a 

halt. It also spreads the impact to a larger area, thus safeguarding the head from severe 

injuries. More importantly it acts as a mechanical barrier between head and object to which 

the rider came into contact. Injuries can be minimized if a good quality full helmet is used. 

Traffic rules are there to bring a sense of discipline, so that the risk of deaths and injuries can 

be minimized significantly. However strict adherence to these laws is absent. Hence efficient 

and feasible techniques must be created to overcome these problems. To reduce the involved 

risk, it is highly desirable for bike-riders to use helmet. Worrying fact is that India ranks in 

top as far as road crash deaths are considered. Rapid urbanization, avoiding helmets, seat 

belts and other safety measures while driving are some of the reasons behind this trend 

according to analysis done by experts. In 2015 India signed Brasilia Declaration on Road 

Safety, where India committed to reduce road crash deaths to 50 percent by 2020.  

Observing the usefulness of helmet, Governments have made it a punishable offense 

to ride a bike without helmet and have adopted manual strategies to catch the violators. 

However, the existing video surveillance-based methods are passive and require significant 

human assistance. In general, such systems are infeasible due to involvement of humans, 

whose efficiency decreases over long duration.  
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Automation of this process is highly desirable for reliable and robust monitoring of 

these violations as well as it also significantly reduces the amount of human resources 

needed.  

Recent research has successfully done this work based on CNN, R-CNN, LBP, HoG, HaaR 

features, etc. But these works are limited with respect to efficiency, accuracy or the speed 

with which object detection and classification is done.  

1.1 Project Overview:  

In this Project Work, a Non-Helmet Rider detection system is built which attempts to 

satisfy the automation of detecting the traffic violation of not wearing helmet and extracting 

the vehicles’ license plate number. The main principle involved is Object Detection using 

Deep Learning at three levels. The objects detected are person, motorcycle at first level using 

YOLOv3, helmet at second level using YOLOv3, License plate at the last level using Web 

API. Then the license plate registration number is extracted using Web Automation. Hence a 

database will be available for analysis for the police authority.  

 
1.2 Literature Survey  

In various fields, there is a necessity to detect the target object and track them 

effectively while handling occlusions and other included complexities. Many researchers 

(Almeida and Guting 2004, Hsiao-Ping Tsai 2011, Nicolas Papadakis and Aure lie Bugeau 

2010) attempted for various approaches in object tracking. The nature of the techniques 

largely depends on the application domain. Some of the research works which made the 

evolution to proposed work in the field of object tracking are depicted as follows  

Until very recently, most of the methods used for object detection and object 

classification used methods such as Haar, HOG, local binary patterns (LBP), the scale 

invariant feature transform (SIFT), or speeded up robust features (SURF) for feature 

extraction and then support vector machines (SVM), random forests, or AdaBoost for the 

classifier. Silva et al. [1] use methods such as histograms of oriented gradient (HOG), LBP, 

and the wavelet transform (WT) for feature extraction for classifying motorcyclists with 

helmets and without helmets. They use multiple combinations of the base features such as 

HOG+LBP+WT, obtaining seven possible feature sets. In [5], K. Dahiya et al. came up with 

helmet detection from surveillance videos where they used an SVM classifier for classifying 
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between motorcyclist and non-motorcyclist and another SVM classifier for classifying 

between helmet and without helmet. For both classifiers, three widely used features - HOG, 

SIFT and LBP - were implemented and the performance of each was compared with that of 

other two features. They concluded that HOG descriptor helped in achieving the best 

performance.  

In [6], C. Vishnu et al. proposed an approach using Convolutional Neural Networks 

(CNNs) for classification. In recent years, CNNs performing both automatic feature 

extraction and classification have outperformed previously dominant methods in many 

problems. Advances in graphical processing units (GPUs), along with the availability of more 

training data for neural networks to learn, have recently enabled unprecedented accuracy in 

the fields of machine vision, natural language processing, and speech recognition. Nowadays, 

all state-of-the-art methods for object classification, object detection, character classification, 

and object segmentation are based on CNNs. See for example the methods used in the 

ImageNet large scale visual recognition challenge [2].  

Li and Shen [3] use a deep convolutional neural network and long-short term memory 

(LSTM) for the license plate recognition and character extraction process. They use two 

methods for segmentation and recognition. [4] have shown the use of CNNs for text detection 

and recognition provides significant improvement over existing methods.  

The YOLOv3 algorithm is capable of accurate object detection (traffic participants) 

with near real- time performance (~ 25 fps on HD images) in the variety of the driving 

conditions (bright and overcast sky, snow on the streets, and driving during the night).  

YOLO v3 algorithm consists of fully CNN [7] and an algorithm for post-processing 

outputs from neural network. CNNs are special architecture of neural networks suitable for 

processing grid-like data topology. The distinctive feature of CNNs which bears importance 

in object detection is parameter sharing. Unlike feedforward neural networks, where each 

weight parameter is used once, in CNN architecture each member of the kernel is used at 

every position of the input, which means learning one set of parameters for every location 

instead a separate set of parameters.  

The YOLOv3 AP does indicate a trade-off between speed and accuracy for using 

YOLO when compared to RetinaNet, since RetinaNet training time is greater than 

YOLOv3. The accuracy of detecting objects with YOLOv3 can be made equal to the 

accuracy when using RetinaNet by having a larger dataset, which makes it an ideal option 

for models that can be trained with large datasets. An example of this would be common 
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detection models like traffic detection, where plenty of data can be used to train the 

model since the number of images of different vehicles is plentiful. YOLOv3 may not be 

ideal to use with niche models where large datasets can be hard to obtain. 

 

1.3 Problem Definition:  

Road safety is the most important aspect of this automobile driven technological 

world. Considering the number of people taking road transport as the means to reach their 

destination, the number of people reaching the heavens instead of their safe home, is 

increasing day-to-day. The irresponsible driving of the two-wheelers or the heavy speeding of 

the four-wheelers is the major reason for the occurring accidents. These irresponsible drivers 

are making it hard for the drivers that follow the traffic rules. The current increase in the 

fine/challan system might control these irresponsible drivers to an extent, but this is not a 

permanent solution that we can rely on. 

Existing system monitors the traffic violations primarily through CCTV recordings, where 

the traffic police must investigate the frame where the traffic violation is happening, zoom 

into the license plate in case rider is not wearing helmet. But this requires lot of manpower 

and time as the traffic violations frequently and the number of people using motorcycles is 

increasing day-by-day. What if there is a system, which would automatically look for traffic 

violation of not wearing helmet while riding motorcycle and if so, would automatically 

extract the vehicles’ license plate number.  
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CHAPTER 2 

OVERVIEW OF OBJECT DETECTION 

Object detection is a computer technology related to computer vision and image 

processing that deals with detecting instances of semantic objects of a certain class (such as 

humans, buildings, or cars) in digital images and videos. Well researched domains of object 

detection include face detection and pedestrian detection. Object detection has applications in 

many areas of computer vision, including image retrieval and video surveillance. It is widely 

used in computer vision task such as face detection, face recognition, video object co-

segmentation. It is also used in tracking objects, for example tracking a ball during a football 

match, tracking movement of a cricket bat, tracking a person in a video.  

Every object class has its own special features that helps in classifying the class – for 

example all circles are round. Object class detection uses these special features. For example, 

when looking for circles, objects that are at a distance from a point (i.e. the centre) are 

sought. Similarly, when looking for squares, objects that are perpendicular at corners and 

have equal side lengths are needed. A similar approach is used for face identification where 

eyes, nose, and lips can be found and features like skin Colour and Distance Between Eyes 

Can Be Found.  

Object classification systems are used by Artificial Intelligence (AI) programs to 

perceive specific objects in a class as subjects of interest. The systems sort objects in images 

into groups where objects with similar characteristics are placed together, while others are 

neglected unless programmed to do otherwise. 

2.1 Existing Methods  

Methods for object detection generally fall into either machine learning-based 

approaches or deep learning-based approaches. For Machine Learning approaches, it 

becomes necessary to first define features using one of the methods below, then using a 

technique such as support vector machine (SVM) to do the classification. On the other hand, 

deep learning techniques that can do end to-end object detection without specifically defining 

features and are typically based on convolutional neural networks (CNN).  

Deep Learning approach:  

 2.1.1 Single Shot Multibox Detection The paper about SSD:  
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 Single Shot MultiBox Detector (by C. Szegedy et al.) was released at the end 

of November 2016 and reached new records in terms of performance and precision for object 

detection tasks, scoring over 74% mAP (mean Average Precision) at 59 frames per second on 

standard datasets such as PascalVOC and COCO. To better understand SSD, let’s start by 

explaining where the name of this architecture comes from:  

•	Single Shot: this means that the tasks of object localization and classification are done in a 

single forward pass of the network  

•	MultiBox: this is the name of a technique for bounding box regression developed by 

Szegedy et al. (we will briefly cover it shortly)  

•	Detector: The network is an object detector that also classifies those detected objects The 

SSD object detection composes of 2 parts: 

•	Extract feature maps. 

•	Apply convolution filters to detect objects. Modified from SSD:  

Single Shot MultiBox Detector SSD uses VGG16 to extract feature maps. Then it 

detects objects using the Conv4_3 layer. For illustration, we draw the Conv4_3 to be 8 × 8 

spatially (it should be 38 × 38). For each cell (also called location), it makes 4 object 

predictions. Each prediction composes of a boundary box and 21 scores for each class (one 

extra class for no object), and we pick the highest score as the class for the bounded object. 

Conv4_3 makes a total of 38 × 38 × 4 predictions: four predictions per cell 10 regardless of 

the depth of the feature maps. As expected, many predictions contain no object. SSD reserves 

a class “0” to indicate it has no objects. Each prediction includes a boundary box and 21 

scores for 21 classes (one class for no object).  

Convolutional predictors for object detection:  

SSD does not use a delegated region proposal network. Instead, it resolves to a very 

simple method. It computes both the location and class scores using small convolution filters. 

After extracting the feature maps, SSD applies 3 × 3 convolution filters for each cell to make 

predictions. (These filters compute the results just like the regular CNN filters.) Each filter 

outputs 25 channels: 21 scores for each class plus one boundary box. Apply a 3x3 
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convolution filter to make a prediction for the location and the class. 11 For example, in 

Conv4_3, we apply four 3 × 3 filters to map 512 input channels to 25 output channels.  

 2.1.2 Region Proposals (R-CNN, Fast R-CNN, Faster R-CNN):  

 In this, algorithms try to draw a bounding box around the object of interest to 

locate it within the image. Also, you might not necessarily draw just one bounding box in an 

object detection case, there could be many bounding boxes representing different objects of 

interest within the image and you would not know how many beforehand. The major reason 

why you cannot proceed with this problem by building a standard convolutional network 

followed by a fully connected layer is that, the length of the output layer is variable — not 

constant, this is because the number of occurrences of the objects of interest is not fixed. A 

naive approach to solve this problem would be to take different regions of interest from the 

image and use a CNN to classify the presence of the object within that region. The problem 

with this approach is that the objects of interest might have different spatial locations within 

the image and different aspect ratios. Hence, you would have to select a huge number of 

regions and this could computationally blow up. Therefore, algorithms like R-CNN, YOLO 

etc have been developed to find these occurrences and find them fast.  

2.1.3 Resnet:  

 To train the network model in a more effective manner, we herein adopt the 

same strategy as that used for DSSD (the performance of the residual network is better than 

that of the VGG network). The goal is to improve accuracy. However, the first implemented 

for the modification was the replacement of the VGG network which is used in the original 

SSD with ResNet. We will also add a series of convolution feature layers at the end of the 

underlying network. These feature layers will gradually be reduced in size that allowed 

prediction of the detection results on multiple scales. When the input size is given as 300 and 

320, although the ResNet–101 layer is deeper than the VGG–16 layer, it is experimentally 

known that it replaces the SSD’s underlying convolution network with a residual network, 

and it does not improve its accuracy but rather decreases it.  

RetinaNet, a one-stage detector, by using focal loss, lower loss is contributed by 

“easy” negative samples so that the loss is focusing on “hard” samples, which improves the 

prediction accuracy. With ResNet+FPN as backbone for feature extraction, plus two task-

specific subnetworks for classification and bounding box regression, forming the RetinaNet, 
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which achieves state-of-the-art performance, outperforms Faster R-CNN, the well-known 

two-stage detectors. ResNet is used for deep feature extraction. 

 

 

Figure 2.1. Retina Net Detector Architecture 

2.1.4 Yolov3:  

 YOLOv3 (You Only Look Once, Version 3) is a real-time object detection 

algorithm that identifies specific objects in videos, live feeds, or images. Versions 1-3 of 

YOLO were created by Joseph Redmon and Ali Farhadi. The first version of YOLO was 

created in 2016, and version 3, which is discussed extensively in this article, was made two 

years later in 2018. YOLO is implemented using the Keras or OpenCV deep learning 

libraries. 

YOLO v3 algorithm consists of fully CNN and an algorithm for post-processing 

outputs from neural network. CNNs are special architecture of neural networks suitable for 

processing grid-like data topology. The distinctive feature of CNNs which bears importance 

in object detection is parameter sharing. Unlike feedforward neural networks, where each 

weight parameter is used once, in CNN architecture each member of the kernel is used at 

every position of the input, which means learning one set of parameters for every location 

instead a separate set of parameters. This feature plays important role in capturing whole 

scene on the road.  
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Figure 2.2. Overview of YOLOV3 algorithm. 

 

Figure 2.3. YoloV3 Architecture 

This algorithm starts with extraction single image from video stream, in a next step extracted 

image is resized and that represent input to Yolo network. YOLO v3 neural network consist 

of 106 layers. Besides using convolutional layers, its architecture also contains residual 

layers, up sampling layers, and skip (shortcut) connections. 

CNN takes an image as an input and returns tensor (see Fig 3) which represents:  
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Figure 2.4. Bounding box prediction. 

Coordinates and positions of predicted bounding boxes which should contain objects, A 

probability that each bounding box contains object,  

Probabilities that each object inside its bounding box belongs to a specific class.  

The detection is done on the three separate layers. Object detection done at 3 different scales 

addresses the issue of older YOLO neural network architectures, the detection of the small 

objects. Output tensors from those detection layers have the same widths and heights as their 

inputs, but depth is defined as: the number of bounding box properties such as width (bw), 

height (bh), x and y position of the box (bx, by) inside the image, 1 is the probability that box 

contains the detectable object (pc) and class probabilities for each of the classes (c1, c2, ..., 

c5).  

That sum is multiplied by 3, because each of the cells inside the grid can predict 3 bounding 

boxes. As the output from the network, we get 10 647 bounding box predictions.  

This network has an ability to simultaneously detect multiple objects on the single 

input image. Features are learned during the network training process when the network 

analyses the whole input image and does the predictions. In that way, the network has 

knowledge about the whole scenery and objects environment, which helps the network to 

perform better and achieve higher precision results comparing to the methods which use the 

sliding window approach. The concept of breaking down the images to grid cells is unique in 

YOLO, as compared to other object detection solutions. Predictions whose pc is lower than 
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0.5 are ignored and that way, most of the false predictions are filtered out. Remaining 

bounding boxes are usually prediction of the same object inside the image. They are filtered 

out using the non max suppression algorithm.  

 

Figure 2.5. Algorithm comparison 
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CHAPTER 3 
 

OBJECT DETECTION WITH PYTHON AND IMAGEAI 

ImageAI is a Python library to enable ML practitioners to build an object detection 

system with only a few lines of code. 

Before we start, we need to install some of the dependencies that we will need to run ImageAI 

properly. These dependencies are: 

Numpy 

pip install numpy==1.16.1 

TensorFlow 

pip install tensorflow==1.14.0 

TensorFlow GPU 

pip install tensorflow-gpu==1.14.0 

Keras 

pip install keras==2.2.4 

OpenCV 

pip install opencv-python 

After installing all of those libraries, then we can start to install ImageAI library by typing the 

following command in your prompt: 

pip install imageai –upgrade 

Next, we are ready to build our object detection system for image and for video. 

3.1 Creating an Image Object Detection System 

To start creating an image object detection system, first let’s import the libraries that 
we’re going 

to use and also set our current working directory. 
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from imageai.Detection  

importObjectDetection 
import oscurrent_directory = os.getcwd() 

As we want to implement an object detection in an easy and quick way, we will use a 

pretrained model specific for object detection that has been trained on COCO dataset. 

There are three different pretrained models that you can choose with ImageAI: RetinaNet, 

YOLOv3, and tinyYOLOv3. You can download the model of your choice. 

After you’ve downloaded the model, place the h5 file in the same directory as your Python 

script. Your working directory should now has the following structure. 

root_folder/ 
   python_script.py 
   pretrain_model.h5 

Back to our Python script, we now can instantiate the ObjectDetection class that we have 

imported before. Depending on the model that you have downloaded before, we need to call a 

proper method from ObjectDetection class. Below is the code implementation for that. 

detector = ObjectDetection()# if you use RetinaNet model, call the following method 
detector.setModelTypeAsRetinaNet()# if you use YOLOv3 model, call the following method 
detector.setModelTypeAsYOLOv3()# if you use tinyYOLOv3 model, call the following 
method 
detector.setModelTypeAsTinyYOLOv3() 

Next, we can start to load the model by first specifying the path to our model. Since our model 

is in the same directory as our Python script, here I show you how to load the RetinaNet 

model. If you use YOLOv3 or tinyYOLOv3, you need to change the file name of your h5 file 

accordingly. 

detector.setModelPath(os.path.join(current_directory , 
"resnet50_coco_best_v2.0.1.h5"))detector.loadModel() 

Finally, we can start to create an image object detection system. To do this, we need to specify 

two things: First, the directory and the filename of our input image and second, the directory 

and the filename of the output image. 

In the following code implementation, the input image will be an image 

called ‘traffic.jpg’ that is located in the same directory as the Python script. Meanwhile, the 

detection result will be saved in a file called ‘traffic_detected.jpg’ in the same directory. 
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Detections       = detector.detectObjectsFromImage( 
input_image = os.path.join(current_directory, "traffic.jpg"),  
output_image_path       = os.path.join(current_directory , "traffic_detected.jpg") 
) 
for eachObject in detections: 
    print( 
         eachObject["name"] , " : ", 
         eachObject["percentage_probability"], " : ", 
         eachObject["box_points"] ) 
    print("--------------------------------") 

And that’s the code that we need to instantiate our image object detection system. Below is the 

full code implementation of the steps that we have covered above: 

from imageai.Detection import ObjectDetection 

import os 

current_directory = os.getcwd() 

detector = ObjectDetection() 

detector.setModelTypeAsRetinaNet() 

detector.setModelPath(os.path.join(current_directory , "resnet50_coco_best_v2.0.1.h5")) 

detector.loadModel() 

detections = detector.detectObjectsFromImage(input_image=os.path.join(current_directory, 
"traffic.jpg"),  

                                            output_image_path=os.path.join(current_directory , 
"traffic_detected.jpg")) 

for eachObject in detections: 

    print(eachObject["name"] , " : ", eachObject["percentage_probability"], " : ", 
eachObject["box_points"] ) 

    print("--------------------------------") 

If you run the complete code above, you’ll get more or less similar result on the image of your 

choice. 
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Figure 3.1. Input image without detection and output image indicating detection. 

3.2 Tuning Image Object Detector 

If you use the default value that we have seen in the implementation above, you might 

think that somehow the result of the object detection is overcrowded, with several bounding 

boxes overlapping one another.In order to reduce the clutter in the prediction result, you can 

tune the object detector such that it only shows the object that really matters for you.Let’s use 

the image above as an example. Let’s say I want the object detector to predict only the people 

and the bicycle. To do this, we need to instantiate Custom Objects method. Then, we pass the 

name of the objects that we want the system to detect as the argument. 

custom = detector.CustomObjects(person=True, bicycle=True) 

Next, we can start to build the object detection system 

with detectCustomObjectsFromImage method. We pass our custom variable, the path and 

name of our input image, as well as the path and name of our output image. 

detections = detector.detectCustomObjectsFromImage( 
custom_objects = custom, 
input_image = os.path.join(current_directory, "traffic.jpg"),  
output_image_path = os.path.join(current_directory , "traffic_detected.jpg") 
) 

Moreover, we can also further remove the clutter by ignoring the predictions that have 

probability values below a certain threshold value. Let’s say that you want to ignore the 

predictions with probability value below 70%. You can do that by adding 
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the minimum_percentage_probability argument in 

the detectCustomObjectsFromImage method. 

detections = detector.detectCustomObjectsFromImage( 
custom_objects = custom, 
input_image = os.path.join(current_directory, "traffic.jpg"),  
output_image_path = os.path.join(current_directory , "traffic_detected.jpg"), 
minimum_percentage_probability = 70 
) 

Below is the complete code implementation when we want to detect only people and bicycle 

from our image, and we also only want to show the detection where the probability value is 

above 70%. 

from imageai.Detection import ObjectDetection 

import os 

current_directory = os.getcwd() 

detector = ObjectDetection() 

detector.setModelTypeAsRetinaNet() 

detector.setModelPath(os.path.join(current_directory , "resnet50_coco_best_v2.0.1.h5")) 

detector.loadModel() 

custom = detector.CustomObjects(person=True, bicycle=True) 

detections = detector.detectCustomObjectsFromImage( 

                custom_objects = custom, 

                input_image = os.path.join(current_directory, "traffic.jpg"),  

                output_image_path = os.path.join(current_directory , "traffic_detected.jpg"), 

                minimum_percentage_probability = 70 

) 

for eachObject in detections: 

    print(eachObject["name"] , " : ", eachObject["percentage_probability"], " : ", 
eachObject["box_points"] ) 
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    print("--------------------------------") 

If you run the code above, you’ll get more or less the result like this: 

 

Figure 3.2. Detection of class objects with their accuracies. 

And that’s it! With just a few lines of code now you can implement an object detection system 

for your own image. However, what if you want to detect objects in a video or even from your 

webcam instead of an image? Let’s find out how to create a similar object detection for video 

with ImageAI in the next section. 

3.3 Creating a Video Object Detection System 

Believe it or not, the code to create a video object detection system with ImageAI is 

pretty much similar with the image object detection system we’ve built before. All we need to 

do is changing 3 lines of code. 

The first one is the library that we should import. So instead of ObjectDetection , we need to 

import VideoObjectDetection . 

from imageai.Detection import VideoObjectDetection 

The second change that we should apply is the step where we instantiate object detection 

class. Instead of using ObjectDetection() , we should use VideoObjectDetection() . 

detector = VideoObjectDetection() 
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Next, the third or the final change that we should apply is when we create the object detection 

system. In our previous code, we use detectObjectsFromImage method. If we want to detect 

objects from a video, we need to use detectObjectsFromVideo instead. 

detections = detector.detectObjectsFromVideo( 
 input_file_path=os.path.join(current_directory, "footage.mp4"), 
 output_file_path=os.path.join(current_directory,"footage_detected") 
) 

As you can see, the argument that we need to pass into this method is still the same as before. 

First, we need to specify the path to our video directory and the filename of our video. Second, 

we also need to specify the path and the filename of the output video. 

Below is the entire code implementation to create a video object detection system. 

from imageai.Detection import VideoObjectDetection 
import os 
current_directory = os.getcwd() 
detector = VideoObjectDetection() 
detector.setModelTypeAsRetinaNet() 
detector.setModelPath(os.path.join(current_directory , "resnet50_coco_best_v2.0.1.h5")) 
detector.loadModel() 
detections = 
detector.detectObjectsFromVideo(input_file_path=os.path.join(current_directory, 
"footage.mp4"),  
output_file_path=os.path.join(current_directory , "footage_detected"), 
frames_per_second=20, log_progress=True) 

Now if you run the code implementation above, you’ll get more or less similar result as below. 
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Figure 3.3. Complete output of the detected objects with greater accuracy. 

Note: if you somehow don’t get the same color format in your output video, i.e you get the 

output video that is in BGR format instead of RGB format, you can use the code below to 

convert the output video back to RGB format. 

All you need to do is specifying the path and the filename of the video that you want to 

convert as well as the converted video. 

import cv2 

import os 

current_directory = os.getcwd() 

# Change the path and filename of your input video with its extension 

video_path = os.path.join(current_directory , 'footage_detected.avi' ) 

vs = cv2.VideoCapture(video_path) 

output_video = None 

while True: 

     

    (frame_exists, frame) = vs.read() 
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    if not frame_exists: 

        break 

else: 

         new_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) 

         key = cv2.waitKey(1) & 0xFF 

# Write the both outputs video to a local folders 

    if output_video is None: 

        fourcc1 = cv2.VideoWriter_fourcc(*"MJPG") 

        # Change the path and filename of your output video with .avi extension 

        output_video = cv2.VideoWriter(os.path.join(current_directory , 
'footage_detected_corrected.avi' ), fourcc1, 25,(new_frame.shape[1], new_frame.shape[0]), 
True) 

      elif output_video is not None: 

        output_video.write(new_frame) 

 if key == ord("q"): 

        break 

vs.release() 

output_video.release() 

cv2.destroyAllWindows() 

3.4 Tuning Video Object Detection 
Same as our image object detection system, we can also fine tune our video object 

detection system a little bit. We have the option to pick which objects that we want to detect 

and to select the threshold for the probability value that should be displayed. 

Let’s say we want to only detect people and bicycle for our video object detection system. 

Also, we only want to show the detections that have the probability value above 70%. We can 

do so by first instantiating a variable to store the objects that we want to observe. 

custom = detector.CustomObjects(person=True, bicycle=True) 
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Next, we can create our video object detection system with our custom objects. To do so, we 

call the detectCustomObjectsFromVideo method. For the arguments of this method, we pass 

our custom variable, path and filename of our input and output video, frames per second, as 

well as the minimum threshold for probability value. 

 detections = detector.detectCustomObjectsFromVideo( 
 custom_objects = custom,  
 input_file_path=os.path.join(execution_path, "footage.mp4"), 
 output_file_path=os.path.join(execution_path, "footage_detected"), 
 frames_per_second=20, log_progress=True, 
 minimum_percentage_probability = 70) 

Below is the complete code implementation if you want to only detect people and bicycle 

which has a probability value above 70%. 

from imageai.Detection import VideoObjectDetection 

import os 

current_directory = os.getcwd() 

detector = VideoObjectDetection() 

detector.setModelTypeAsRetinaNet() 

detector.setModelPath(os.path.join(current_directory , "resnet50_coco_best_v2.0.1.h5")) 

detector.loadModel() 

custom = detector.CustomObjects(person=True, bicycle=True) 

detector = detector.detectCustomObjectsFromVideo( 

      custom_objects = custom,  

      input_file_path=os.path.join(current_directory, "footage.mp4"), 

      output_file_path=os.path.join(current_directory, "footage_detected"), 

      frames_per_second=20, log_progress=True, 

      minimum_percentage_probability = 70) 
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3.5 Creating Video Object Detection from Webcam 
Now what if you want to create an object detection system with your camera feeds as 

your input? Creating this system with ImageAI is also very straightforward. The code itself is 

very much similar with our video object detection system. You only need to add one line of 

code and also change one line of code to do this. 

First, we need to create a variable to instantiate the OpenCV library to capture the frame 

directly from our webcam. 

camera = cv2.VideoCapture(0) 

Finally, we need to change the argument in detectObjectsFromVideo method. Instead of 

specifying the input file path, we need to specify our camera input, which is 

the camera variable that we’ve created above. 

detections = detector.detectObjectsFromVideo( 
             camera_input = camera, 
             output_file_path =        os.path.join(current_directory,"camera_detected_video"), 
             frames_per_second=20, log_progress=True) 

Below is the complete code implementation to create an object detection system directly from 

your webcam. 

from imageai.Detection import VideoObjectDetection 

import os 

import cv2 
 
current_directory = os.getcwd() 
 
camera = cv2.VideoCapture(0) 
 
detector = VideoObjectDetection() 
detector.setModelTypeAsRetinaNet() 
 
detector.setModelPath(os.path.join(current_directory , "resnet50_coco_best_v2.0.1.h5")) 
detector.loadModel() 
 
detections = detector.detectObjectsFromVideo( 
                camera_input = camera, 
                output_file_path = os.path.join(current_directory, "camera_detected_video"), 
                frames_per_second = 20, log_progress=True) 
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Again, if you somehow get the a different color format in your output video, you can use the 

aforementioned code to convert the output from BGR to RGB format. 

3.6 Closing Remarks 
Now you already know how to create a quick and easy object detection system with 

ImageAI. As you have seen, ImageAI library enables us to build an object detection system 

without having to deal with the complexity behind object detection model like ResNet or 

YOLO. 

Note that with the pretrained model supported by ImageAI, the object detector can detect 80 

different objects. These objects are: 

person, bicycle, car, motorcycle, airplane, bus, train, truck, boat, traffic light, fire hydrant, 

stop_sign, parking meter, bench,   bird, cat, dog, horse, sheep, cow, elephant, bear,zebra, giraffe,   

backpack, umbrella, handbag, tie, suitcase, frisbee, skis,   snowboard, sports ball, kite, baseball bat, 

baseball glove,   skateboard, surfboard, tennis racket, bottle, wine glass, cup,   fork, knife, spoon, 

bowl, banana, apple, sandwich, orange, broccoli,   carrot, hot dog, pizza, donot, cake, chair, couch, 

potted plant,   bed, dining table, toilet, tv, laptop, mouse, remote, keyboard,   cell phone, 

microwave, oven, toaster, sink, refrigerator, book,   clock, vase, scissors, teddy bear, hair dryer, 

toothbrush. 
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CHAPTER 4 

SYSTEM DESIGN 

4.1 Procedure  

I. Install TensorFlow-GPU and all required libraries  

II. Set up Object Detection directory structure and Google collab Environment  

III. Gather and label pictures  

IV. Generate training data  

V. Create label map and configure training  

VI. Train object detector  

VII. Test it out.  

VIII. Extract Licence plate number  

IX. Generate E-challan  

4.2 Flowchart of Proposed System  

 

 

Figure 4.1. Flowchart of the System. 

4.3 System Requirements  

4.3.1 Major Software’s and Libraries Used 
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1. Google Collab  
Google Collab is a free Jupyter notebook environment that runs entirely in the cloud. 

Most importantly, it does not require a setup and the notebooks that you create can be 

simultaneously edited by your team members - just the way you edit documents in 

Google Docs. Collab supports many popular machine learning libraries which can be 

easily loaded in your notebook.  

As a programmer, we can perform the following using Google Collab:  

• Write and execute code in Python  

• Document your code that supports mathematical equations  

• Import/Save notebooks from/to Google Drive  

• Integrate PyTorch, TensorFlow, Keras, OpenCV  

• Free Cloud service with free GPU  

2. Python: The programming style of Python is simple, clear and it also contains 

powerful different kinds of classes. Moreover, Python can easily combine other 

programming languages, such as C or C++. As a successful programming language, it 

has its own advantages: 	

• Simple and easy to learn 	

• Open source 	

• Scalability 	

3. OpenCV: OpenCV (Open source computer vision) is a library of programming 

functions mainly aimed at real- time computer vision. The library is cross-platform 

and free for use under the open-source BSD license. OpenCV supports the deep 

leaning framework TensorFlow, Torch/PyTorch and caffe.  

4. NumPy: In Python, there is data type called array. To implement the data type of 

array with python, NumPy is the essential library for analysing and calculating data. 

They are all open source libraries. NumPy is mainly used 22 for the matrix calculation  

5. Pandas , Matplotlib: pandas is a fast, powerful, flexible and easy to use open source 

data analysis and manipulation tool,built on top of the Python programming language. 

Matplotlib is a comprehensive library for creating static, animated, and interactive 

visualizations in Python. Matplotlib makes easy things easy and hard things possible.  

6. Pillow: Python Imaging Library (abbreviated as PIL) (in newer versions known as 

Pillow) is a free and open-source additional library for the Python programming 
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language that adds support for opening, manipulating, and saving many different 

image file formats.  

The Python Imaging Library adds image processing capabilities to your Python 

interpreter. This library provides extensive file format support, an efficient internal 

representation, and powerful image processing capabilities. The core image library is 

designed for fast access to data stored in a few basic pixel formats. It should provide a 

solid foundation for a general image processing tool.  

7. TensorFlow: TensorFlow, an open-source software library for dataflow programming 

across a range of tasks. It is a symbolic math library and is also used for machine 

learning applications such as neural networks. It is used for both research and 

production at Google. Its flexible architecture allows for the easy deployment of 

computation across a variety of platforms (CPUs, GPUs, TPUs), and from desktops to 

clusters of servers to mobile and edge devices. TensorFlow computations are 

expressed as stateful dataflow graphs. The name TensorFlow derives from the 

operations that such neural networks perform on multidimensional data arrays. These 

arrays are referred to as "tensors".  

Why TensorFlow for Object Detection:  

• It allows Deep Learning. 	

• Known as the second-generation machine learning system, it performs numerical 

computations through data flow graphs. 	

• It is open source and free. 	

• It is reliable (and without major bugs). 26 	

• It is backed by Google and a good community. 	

• It is a skill recognized by many employers. 	

• It is easy to implement. 	

• With capability of running on CPUs and GPUs, it can be deployed in broad range of 

products of Google such as Speech Recognition, Google Photos, Gmail and even 

Search.	

ImageAI: is a python library built to empower developers, researchers and students to build 

applications and systems with self-contained Deep Learning and Computer Vision 

capabilities using simple and few lines of code.	
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Keras: Keras is an open source neural network library written in Python. It can run on top of 

TensorFlow, Microsoft Cognitive Toolkit, or Theano Designed to enable fast 

experimentation with deep neural networks, it focuses on being user-friendly, modular, and 

extensible Keras.This is done via the keras preprocessing image.ImageDataGenerator 

class. 

This class allows you to configure random transformations and normalization operations to 

be done on your image data during training instantiate generators of augmented image 

batches (and their labels) via .flow(data, labels) These generators can then be used with the 

Keras model method that accepts datainputs, fit_generator, evaluate_generator and 

predict_generator. 

Selenium Web driver: Selenium is an umbrella project for a range of tools and libraries that 

enable and support the automation of web browsers. Selenium supports automation of all the 

major browsers in the market using WebDriver. WebDriver is an API and protocol that 

defines a language-neutral interface for controlling the behavior of web browsers.  

Web scraping is a technique which could help us transform HTML unstructured data into 

structed data in spreadsheet. 

Refers to both the language bindings and the implementations of the individual browser 

controlling code. This is commonly referred to as just WebDriver. Selenium WebDriver is 

aW3C Recommendation.  

▪ WebDriver is designed as a simple and more concise programming interface.  

▪ WebDriver is a compact object-oriented API. 

▪ It drives the browser effectively. 
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CHAPTER 5 

SYSTEM IMPLEMENTATION  

One important element of deep learning and machine learning at large is dataset. A good 

dataset will contribute to a model with good precision and recall. In the realm of object 

detection in images or motion pictures.  

• For Motorcycle detection: we used trained model with COCO Dataset with accuracy 

of 99%.  

• For Helmet Detection: We created our own Yolov3 Model with our own dataset 

with 1000+ images of helmet and non-helmet riders.  

• For License plate: We used API for extraction and web automation for getting 

details for E- Challan Generation.  

5.1 Model for Motorcycle Detection:  

Coco Dataset for Motorcycle Detection: COCO is a large-scale object detection, 

segmentation, and captioning dataset. This version contains images, bounding boxes " and 

labels for the 2017 version. Coco defines 80 classes.  

COCO stands for Common Object Context. The COCO dataset contains the images which 

are captured in our daily life scenes. COCO provides multi-object labeling, segmentation 

mask annotations, image captioning, key-point detection and panoptic segmentation 

annotations with a total of 80 categories, making it a very versatile and multi-purpose dataset.  

As we have mentioned above that the COCO dataset contains a total of 80 categories, we 

import the required libraries that are required to access the COCO dataset. The input contains 

many objects like Buses, Cars, and Motorcycles etc.  The libraries imported will helps divide 

the required objects from all other objects and the detected objects will be given certain IDs to 

access them later. Coco.GetObjectIds is a function used to get the IDs for the differentiated 

objects. 

The 80 categories are as follows: 
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Table 5.1. COCO dataset objects 
 

Person Bicycle Car Motorcycle Airplane 

Bus Train Truck Boat Traffic light 

Fire 
hydrant 

Stop sign Parking 
meter 

Bench Bird 

Cat Dog Sheep Cow Elephant 
Bear Zebra Giraffe Backpack Umbrella 

Handbag Tie Suitcase Frisbee Skis 
Snowboard Sports ball Kite Baseball 

bat 
Baseball 

glove 
Skateboard Surfboard Tennis 

racket 
Bottle Wine glass 

Cup  Knife Spoon Bowl Banana 
Apple Sandwich Orange Broccoli Carrot 

Hotdog Pizza donot Cake Chair 

Couch Potted plant Bed Dining 
table 

Toilet 

Tv Laptop Mouse Remote Keyboard 
Cell phone Microwave  Toaster Sink Refrigerator 

Book Clock Vase Scissors Teddy bear 

Hair dryer Toothbrush Fork Horse oven 

Now the question is what if you want to create custom dataset object detection. 

Steps for creating a custom dataset for object detection: 
Ø Annotate data  

Ø Convert annotation files to COCO dataset format 

Ø Train an instance segmentation model with mmdetection framework 

Framework: Darknet is an open source neural network framework written in C and CUDA. 

YOLO first takes an input image.The framework then divides the input image into grids (say 

a 3 X 3 grid) Image classification and localization are applied on each grid. YOLO then 

predicts the bounding boxes and their corresponding class probabilities for objects (if any are 

found, of course). It is fast, easy to install, and supports CPU and GPU computation.  



 30 

In our case, the framework is done in such a way that the motorcycle which is detected will 

be divided into three frames. 

One contains the complete motorcycle image for future reference, the second contains the 

upper part of the motorcycle image for helmet detection and the final part contains the lower 

part for license plate recognition. 

5.2 Model for Helmet Detection:  

                                     le  

          Figure 5.1.lFlowchart for Helmet Model c 

I5.2.1 Procedure for training a YOLOV3 HELMET model 

Gathering images (Creating data set): To detect a bike rider with helmet or without 

helmet. We need bunch of images of bike-riders with helmet, bike-rider without helmet and 

bike license plate. In this project, we used 1000+ images. 
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    Helmet Images                                                     Non Helmet Images  

Figure 5.2. Helmet dataset 

Label Images:  

Label the all images with the help of LableImg tool. In this project, Helmet class 

was created with the help of LableImg tool. Create .xml file corresponding to each image 

with the above following categories of classes  

Now that our dataset labels are in the required format, we need to create a train-test split. I 

chose to create a test set containing 10% of the images in the dataset. Configuring YOLO 

with your dataset. Now that we have created our train and test sets, we need to make some 

changes to train the YOLO model on the dataset.  

Training:  

Now that our dataset is ready to use, we can begin training. Before we start, compile 

the darknet repository with the make command. To compile with specific options, such as 

GPU, CUDNN and OPENCV. This will create a darknet executable. Trained weights for 

model. You can set other parameters (learning rate, momentum, weight decay etc by editing 

the corresponding lines). Finally, model is ready to use. 

5.3 Number plate Detection  

Platerecognizer: is an open source Automatic License Plate Recognition library 

written in C++ with bindings in C#, Java, Node.js, and Python. The library analyses images 

and video streams to identify license plates. The output is the text representation of any 

license plate characters.  
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The ASP.NET Web API is an extensible framework for building HTTP based 

services that can be accessed in different applications on different platforms such as web, 

windows, mobile etc. It works more or less the same way as ASP.NET MVC web 

application except that it sends data as a response instead of html view. It is like a web 

service or WCF service but the exception is that it only supports HTTP protocol. 

 
Figure 5.3. Working of Web API 

 
Web API Version Supported .NET Framework Coincides with Supported in 
Web API 1.0 .NET Framework 4.0 ASP.NET MVC 4 VS 2010 
Web API 2 - Current .NET Framework 4.5 ASP.NET MVC 5 VS 2012, 2013 

Table 5.2. ASP.NET Web API Versions 

Table Plate Recognizer Snapshot API! You can use our API to access our API endpoints, 

which can read license plates from images. Plate Recognizer provides accurate, fast, 

developer-friendly Automatic License Plate Recognition (ALPR) software that works in all 

environments.  

The software can be used in many ways:  

1. Recognize license plates from camera streams. The results are browsable, searchable, and can 

trigger alerts. The data repository can be in the cloud or stored entirely within your on-site 

network.  

2. Recognize license plates from camera streams and send the results to your own application.  

3. Integrate license plate recognition into your application directly in-code.  

5.4 Automated E-Challan Generation  
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Further this Detected LP Numbers are injected to RTO Database for extracting the 

further details of the Violator. Now, we do Automation of web Browser, to get the details of 

offender from RTO Database.  

1. Selenium is an umbrella project for a range of tools and libraries that enable and 

support the automation of web browsers. Selenium supports automation of all the 

major browsers in the market using WebDriver.  

2. WebDriver is an API and protocol that defines a language-neutral interface for 

controlling the behavior of web browsers. Web scraping is a technique which could 

help us transform HTML unstructured data into structed data in spreadsheet.  

3. With Pillow Image Library, with extracted details saved in excel sheet an automatic 

E-challan is generated with details Including Date and time & further it can be sent 

through message, mail or post  

5.5 Triple Riding Detection 

5.5.1 Proposed Model 

The system consists of a main subsystem: setting up the environment, training, 

testing the model and getting the accurate coordinates of the vehicle that comes along 

with the system. The Proposed system of triple riding is illustrated in Fig. 5.4. The 

imposing challans or fines with an automated push of the data to the respective user 

account comes as an extension to the system.  
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Figure 5.4. Proposed Model of triple riding detection 

5.5.2. Traffic rule violation recognition system 

 The system mainly uses the deconvolutional approach of deep learning along 

with the deep learning framework Darknet and the object detection algorithm YOLOv3 

performs the various functionalities like detection, recognition, and Identification, followed 

by classification. The subsystem having the support of the image, video and live feed as the 

input, enables the system to process all kinds of data. Having the image and video input 

assessment as an extension, the live feed of the camera modules deployed at the junctions 

processes every single frame. Every single frame is subjected to the detection of various 

objects. In our prototype model, the various objects that were subjected to the process of the 

training are the bike and the person. The two objects bike, and person are the most important 

aspects of the focus. 

The detection process of the YOLO model makes use of the target regression as a regression 

problem for the spatially separate target box and confidence. 

1.   The YOLO first divides the image into convolutions of size NxN like 13x13, and the 

size of each of the NxN cells depends on the size of the input. 

2. Each cell of these NxN cells is responsible for predicting the number of bounding 

boxes in the input image. 
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3. For every box in the input, the deconvolutional network predicts the confidence that 

the bounding box contains the object and the probability of the enclosed object being 

from one of the classes mentioned in the configuration file. 

4. After that, it applies the Non-Max Suppression to remove the bounding boxes with 

less confidence value. 

5. The processed images are subject to the Intersection over union function developed to 

find out the relation between the persons detected in the frame along with the 

motorbike. Thereby, marking the rectangular bounding box with triple riding as the 

label. 

                 

                             Figure 5.5. Test image for triple riding. 

5.5.3 YOLOv3 (You Only Look Once): 

YOLO is an incremental approach, in this  the third version of the YOLO is used. 

This comes with an incremental improvement from the initial YOLO. The YOLO algorithm 

forwards the image as a whole only once through the network. On the other hand, The Single 

Shot Detector (SSD) also takes the entire image at the same time, but YOLOv3 performs 

much faster, while achieving a better accuracy. 

The YOLOv3 system has been trained on the COCO dataset which was available on the 

internet, capable of detecting various classes. The following figures depict the working of the 

model, Figs. 2 is the test images for the triple riding whereas Fig. 3 is the test image for the 

non-triple riding. 
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    Figure 5.6. Test image for non-triple riding detection 

5.5.4 COCO dataset: 

 Microsoft Common Objects in context (MS COCO) dataset has 91 common 

object groups. This dataset has 2,500,000 labeled instances in 328,000 images. This dataset is 

very extensively used for training because it has images of everyday scenes in their natural 

environment. Objects have been labeled using per-instance segmentation to help in achieving 

accurate object localization. This dataset contains images of 91 object types. While MS 

COCO has fewer categories than ImageNet and SUN, it has more instances per category. 

5.5.5 Training and testing data:  

For training purposes, COCO dataset is being used as it provides us 2,500,000 

labeled instances in 3,28,000 images. The alternative would have been to collect data and 

label it manually, using COCO dataset helps us avoid this work. DPMv5-P is the 

performance reported in VOC release 5. DPMv5-C uses the same implementation but is 

trained using MS COCO dataset. For testing purposes, 1000 unseen images were used. Figure 

4 shows a sample of detecting triple riding on which the model was tested on. 

 5.5.6 License plate detection: 
 
  If the offender is found with triple riding, there is no need for this step. 

However, if the offender is  found, then the motorcycle image is given as input to the license 

plate detection phase Fig.5. Where the image is passed to this library to detect the License 

Plate Number and Return it and Store it for Further use. 

 

Plate Recognizer: It is an open source Automatic License Plate Recognition library. The 

library analyzes images and video streams to identify license plates. The output is the text 

representation of any license plate characters. Further  
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These Detected LP Numbers are injected to the Database for extracting the further details of 

the Violator. 

 

 
 

Figure 5.7. License Plate detection 
 
The system is tested on images that have triple riding as well as images that do not have triple 

riding to check how accurate our system is. The system detects triple riders and puts a 

bounding box on them and labels them as triple riders. The accuracy of our model is 80% 

with an F1 score of 0.847 and also the precision value of our system is 0.8. Implementation 

of this kind of system will increase general awareness and hence reduce accidents. 

 

 5.5.7 E-Challan for Triple Riding: 

  After detection of the license plate number, the system generates E-challan to 

the offenders by accessing the database for their details. It sends the message through E-mail 

of the offender. 
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CHAPTER 6 

WORKFLOW & SYSTEM TESTING 

6.1 Account Setup Gdrive  

 InGooglecollab Editor, First, upload all required data into google drive and now sync 

Gdrive with collab editor.  

 
Figure 6.1. Google Drive Login 

Create PROJECT Folder:  

• Motorcycle_Detection_Model File 	

• Helmet Detection Model File 	

• Final Outputs (Folder) 	

Subfolders 

▪ Full Frame Image ▪ Bikes Image 

▪ Rider Image  

• Challan (Folder) 	

• Chrome WebDriver.exe 	

Importing Required Libraries  
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Figure 6.2. Importing libraries 

• In this section we explain different processing steps. initial phase, frames are 

collected at regular intervals from video file and passed into detection model for 

processing.  

• All these techniques are subjected to predefined conditions and constraints, especially 

the license plate number extraction part. Since, this work takes video as its input, the 

speed of execution is crucial. We have used above said methodologies to build a 

holistic system for both helmet detection and license plate number extraction.  

6.2 Detection of Motorcycle  

 
                                    Figure 6.3. (a) Code for Motorcycle Detection 
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Figure 6.3. (b) Continuation of Code for Motorcycle Detection 

The frame chosen is given as input to YOLOv3 Motorcycle detection model, where the 

classes to be detected are “Motorcycle‟. At the output, image with required class detection 

along with confidence of detection through bounding box and probability value is obtained as 

shown in the Fig 6.4(a) and Fig 6.4(b). Here frame with ‘motorcycle’ classes detected. 

 Rear View                                                     Front View 

 

Figure 6.4. (a) Frame-1 Case 1                       Figure 6.4. (b) Frame-2 Case 2  
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The details of these extracted images which is stored in a dictionary which can be later used 

for further processing.  

Output for each object: [{'name': 'motorcycle', 'percentage_probability':89.4, 'box_points': 

[104, 84, 265, 400]}  

With the help of functions given by Image AI library, only the detected objects are extracted 

as shown below, and stored as separate images and named with class name and image 

number in order.  

We crop these detected frames in 3 formats:  

1. Full Image with motorbike and rider  

2. Bike Image  

3. Rider Image  

For example, it will be saved as Full-1, Full-2, etc. || Bike-1, Bike-2...etc. || Rider-1, Rider-

2...etc.  

 

           Rider-1.jpg     Bike-1.jpg   Full-1.jpg       Rider-2.jpg   Bike-2.jpg     Full-2.jpg  

Figure 6.5. Helmet ROI cropping. 

 



 42 

6.3 Detection of Helmet: 

 

 
Figure 6.6. Code for Helmet Detection. 
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 Once the Motorcycle class is obtained, the Rider images is given as input to Helmet 

detection model. While testing the helmet detection model, some false detections were 

observed. So, the person image was cropped to get only top one-fourth portion of image, as 

shown in Fig. 2 (Rider.jpg). This ensures that false detection cases are eliminated as well as 

avoid cases leading to wrong results when the rider is holding helmet in hand while riding or 

keeping it on motorcycle while riding instead of wearing.  

Now two cases Arise: 

Case 1: When the motorcycle rider is wearing helmet  

Case 2: When the motorcycle rider is not wearing helmet  

Helmet Detection Model:  

                                 Rider-1.jpg                                  Rider-2.jpg 

    

                                Case-1                                            Case-2  

Figure 6.7. Helmet yolov3 prediction 

After applying cropped image to helmet detection model, output is as shown. The bounding 

box around helmet along with the detection probability is displayed as shown in (Rider-

2.jpg). As the rider wearing helmet in Case 2, no further processing is necessary. Since in 

Case 1, rider is not wearing helmet, no bounding box is created. 
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6.4 Detection of Triple Riding  

 

 

 

Figure 6.8. Code for Triple Riding Detection. 
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Figure 6.9. Output for Triple Riding Detection. 

 

 

6.5 Detection of Number Plate        

 

Figure 6.10. Code for Number Plate Recognition 
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If the helmet is found, there is no need for this step. However, if the helmet is not found, then 

the motorcycle image is given as input to license plate detection phase. Where the image is 

passed to this library to detect the License Plate Number and Return it and Store it for Further 

use.  

Platerecognizer is an open source Automatic License Plate Recognition library. The library 

analyzes images and video streams to identify license plates. The output is the text 

representation of any license plate characters. Further this Detected LP Numbers are injected 

to Database for extracting the further details of the Violator.  

 

Figure 6.11. Database created in Spreadsheet. 

 

 
Figure 6.12. Number plate recognition 
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Figure 6.13. Extraction of details using Google Sheets. 

Now, to get the details of offender the model searches from created Database.  

Selenium supports automation of all the major browsers in the market using WebDriver. 

WebDriver is an API and protocol that defines a language-neutral interface for controlling the 

behaviour of web browsers.  

Web scraping is a technique which could help us transform HTML unstructured data into 

structed data in spreadsheet.  

6.6 E-Challan Generation 
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Figure 6.14. Code for E-Challan Generation. 

 
With Pillow Image Library, with extracted details saved in excel sheet an automatic E-

challan is generated with details Including Date and time & further it can be sent through 

message, mail or post. 
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Figure 6.15. Challan for No Helmet Violation 

 

 

Figure 6.16. Challan for Triple Riding Violation. 
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6.7 RELIABILITY 
 
 The system developed is analysed in terms of its efficiency of producing the output 

with accurate detection of objects. 

Table 6.1. Analysis of the model 
Model Efficiency 

Bike Detection 95% 
Helmet Detection 70% 

Triple Riding 80% 
License Plate Recognition 70% 

  
Here in the Table2, the helmet is detected with 70% accuracy because during the detection 

process if the model encounters obstacles like the signboards, turbans, caps, etc, in the 

processed frame, it is treated as the helmet. As for triple riding, the accuracy is 80%, the same 

obligations as helmet detection is observed in this case. The license plate identification is 

purely based on the resolution of the camera. The camera that we used has a 720p definition 

and we were able to detect the characters accurately on the license plate. But in some of the 

cases, one or two characters were misread. Ideally, we recommend a resolution of 1080p 

especially for license number recognition and, 720p in case of a helmet and triple riding. 

About the statistics of the project, the detection process is rapid. The video taken has a 

duration of 54sec and a total frame of 1360. The model took around 1min 8sec to extract the 

video. Out of the total frames 23 frames are used for the implementation. Detection of bikes 

took 220 sec and the helmet detection took 17 sec for 8 frames. Triple Riding Detection 

processed 3 images in 8 sec. At last, license plate recognition and sending of the challan took 

approximately 2 sec per image. The total time taken for this whole process is 5 min 5sec. 

These are purely the observations taken for the prototype developed. The duration varies for 

real-time surveillance videos. The objective with which the system is proposed has achieved 

satisfactory results. 
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FUTURE WORK: 
 
 The system implemented is a prototype. It can be expanded to process the day-to-day 

traffic video by attaining the permissions of the required authorities. A large database is 

created to maintain the records of the violators and their payment of the challans being 

monitored every few minutes. Also, the identification of the license plate becomes the core 

part of this project. So, a camera of high resolution is recommended to maintain precision and 

accuracy. For sending the challan directly to offender’s mobile numbers, the subscriptions for 

SMS are required, as of now it is sent through mail ids, but the motto to send the challan to 

their mails as well as through SMS along with their violation photo, time and date. Our 

system is developed to process the above-mentioned future implementations.  
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CONCLUSION: 
 A Non-Helmet Rider and Triple Riding Detection system is developed where a video 

file is taken as input. If the motorcycle rider in the video footage is not wearing helmet while 

riding the motorcycle, or riding with three members, then the license plate number of that 

motorcycle is extracted and displayed for above cases separately. Object detection principle 

with YOLO architecture is used for motorcycle, person, helmet and license plate detection. 

Google Spreadsheet is used for license plate number extraction if rider is not wearing helmet 

or triple riding. The characters are extracted from LP so that it can be used for other purposes. 

All the objectives of the project is achieved satisfactorily.  
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